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CHAPTER 1

INTRODUCTION

Digital image processing has gained considerable importance due to its numerous applications

in the aerospace, biomedical, commercial television and video teleconferencing systems. The

availability of super-fast chips for digital data processing has made the hardware implementation

of the image processing algorithms feasible for satellite applications due to the reduction achieved

in weight, size and power consumption. A considerable amount of work done in the area of image

processing has focused on coding, bandwidth compression and pattern recognition.

In the area of image processing on board a satellite, the usual objectives are image

enhancement, efficient encoding to reduce the transmission or storage capacity requirements and

pattern recognition for the purpose of extraction of certain feature points. In this work, we focus

on a different aspect of digital data processing. Here, we are concerned with the estimation of image

data using past statistics. Specifically, we are interested in an on-line prediction of the next few

frames of a video sequence using the available frames. The problem then is that of parameter

identification of a time-varying system using a priori knowledge. For this purpose, we apply

estimation theory concepts and derive a fixed predictor as well as one that is adaptive, i.e.. one

which predicts frames by analyzing that data which was received most recently. In the former, a

fixed prediction algorithm is used whereas in the latter it is based on the most recent data. The

specific application considered is that of a remotely piloted vehicle where a man-in-the-loop uses

images relayed by a spacecraft in orbit for remotely maneuvering the vehicle. The prediction of

the image data is expected to enhance the pilot's ability to maneuver the vehicle by compensating

for the data which are either corrupted by channel noise or lost because of a temporary loss in the

communication link. Otherwise, the estimates of the next frames impart added knowledge about

the scene and the target movement, and the resulting smoothing effect is expected to aid

s gnificantly in the piloting operation.
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A brief description of the other areas of research is presented below for a contrast with our

objective. The area of image enhancement is concerned with restoring the quality of the pictures.

w.,hich may be degraded because of a noisy satellite channel, or enhancing the contrast for a better

d scene interpretation. The results of image enhancement work done at the Jet Propulsion

Laboratory for improving the picture quality of the pictures of the Moon and Mars are well

known. Pattern recognition is another important area of research, and refers to extraction of

patterns or other information from images. Its applications are in the area of biomedical

engineering, automatic mapping of earth resources from satellite photographs, etc. Video

bandwidth compression is an area that has received a lot of attention and is concerned with the I
problem of bandwidth constraint either for storage or transmission. For instance, the bandwidth

available from a spacecraft for real-time transmission is severely limited due to the total weight.

equipment size and power constraints. This necessitates compressing of the image data into a much I
smaller bandwidth, simultaneously minimizing any degradation in the received picture quality.

Band,,idth compression techniques seek to achieve this by removing the redundancy inherent in an

image, or a sequence of images, both in the space domain as well as the time domain so that the

image can be represented by a smaller bandwidth. A considerable amount of work in the image

processing area has focused on this problem. Seyler [1] describes a coding technique to reduce the

channel capacity requirement. The applications of predictive coders and transform coders are well

known. The forraer exploit spatial and temporal redundancies in the data, and the latter transform

4 the image data into the frequency domain, and achieve compression by exploiting the fact that the

human eve is sensitive only to changes in the lower frequency coefficients. Hybrid techniques [2]

have also been widely applied since they use a combination of algorithms to achieve the best

-4 compromise between implementation complexity and performance. Adaptive compression

techniques are important due to their ability to monitor their performance and inject a feedback

term in their algorithm, to adapt ttnemselves to changes in the scene statistics. This makes them

more robust than their nonadaptive counterparts. Ericsson [3] reports good results when applying

ad antive predictors rather than fixed predictors for bandwidth reduction via interframe coding. A

1I!
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survey of adaptive image coding techniques is given in [4]. For applications involving feedback

control systems and bandwidth compression systems, great improvements in performance have

been reported with the use of adaptive techniques. This was the motivation to apply this approach

for image data prediction.

,9 As stated above, this work addresses a different problem. Here. the dynamic estimation

problem deals with the determination of image pixel intensities of a video frame based upon those

of the frames already received, i.e.. estimation of unknown, time-varying parameters using

7! measurable data. The motivation for this work is as follows: A teleoperator-based remotely

piloted spacecraft transmits video images obtained from the on-board cameras to a ground control

station for scene and target interpretations. A man-in-the loop (the pilot on the ground control

station) relies on the images transmitted from the spacecraft for maneuvering it near a target

* '. spacecraft for surveillance. In the case of a disabled spacecraft, the aims are rendezvousing and

docking for the purpose of retrieval. In this application, knowledge of the next few frames of the

video sequence could greatly enhance the pilot's perception of the scene and target motion, and thus

S aid significantly in the remote piloting operation.

An added .motivation is due to the problem created by a temporary loss in the communication

link between the spacecraft and the ground control station. As shown in Figure 1, the spacecraft in

* " orbit modulates the digitized video signal onto a radio frequency (RF) carrier and transmits it to a

communication satellite such as NASA's Telecommunications and Data Relay Satellite (TDRS).

The TDRS receives the signal, amplifies it, remodulates it onto another RF carrier and transmits it

to the ground control station. In a situation where the target spacecraft is spinning, the parent

spacecraft, wll have to spin up to the same rate to be able to dock with the target. A spinning

spacecraft would have to alternate between its antennas for transmission of the data as the relay

jsatellite moves out of the field of view (FOV) of one antenna and into that of the other. The FOV

of the satellite antennas is usually limited by the antenna size and weight constraints. It is

conceivable that during a part of the rotauon. the communication satellite may not be within the

!f.s



- --------

*11

V....-
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FO" of either antenna. This would result in a temporary loss in the communication link resulting

in the loss of a fe, frames. A poor link performance (bit error rate of the channel) could also

potentially result in some loss of data, impairing the pilot's ability to maneuver the vehicle.

resulting in either a loss of the mission, the spacecraft, or both. In such cases, reconstruction of the

missing frames using the past statistics could avert a catastrophic failure. The problem then is not

only filtering of the data based on the frames received, but also that of predicting the next few

frames. Even if there were no missing frames, image data prediction offers smoothing cf the data

which would considerablv increase the pilot's perception of the scene.

'- For the sake of image data restoration, the simplest solution may appear to be a frame refresh

based upon the last frame received. This work seeks to exploit the statistical correlation between6
the pixel- of adjacent frames of a video sequence for a more accurate prediction of the images.

., "- Specifically, a fixed and an adaptive predictor are utilized. Underlying both of these approaches is

the problem of parameter estimation of time-varying parameters. For solving the prediction

problem. we first represent the image sequence as a discrete-time linear state vector model. The

challenge presented bv this approach of using fixed and adaptive frame predictions of a video

sequence based upon the past frames received is in modeling the scene dynamics and representing

* the image processing problem as a state vector model. When the system model is completely

specified. standard parameter estimation techniques can be used for designing optimal predictors.

In our case, however, the system model is not completely specified. The problem is compounded by

[ the fact that the video image sequence is characterized by time-varying parameters rather than

stat:onarv ones. We approach this problem in the fixed predictor case by exploiting the inherent

correiation of the adjacent pixels of a frame, and that of adjacent frames to derive the state vector

. model by assuming a fixed interframe and intraframe correlation. In the case of an adaptive

predictor. %,e dnr.e the interframe correlation from the set of frames received and assume that in

the case of sicW dvr.amics, which is typically the case in spacecraft-to-spacecraft docking situation.

the same interframe correlation can be applied to the next set of frames. We intend to investigate

5.:"' if :t :s Fossible tc obtain better results using tnei:e approaches than with simple frame refresh.

00"
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Chapter 2 gives the formulation of the image processing problem.

A truly adapti,,e predictor would have to take into account and compensate for the relative

displacement between successive frames of a sequence. This is because the scene is actually

nonstationary as the camera is moving with the spacecraft and taking pictures of a target which

may also be in motion. Hence, to gain an added insight into the problem. we explore the application

of the pattern recognition theory for estimating object motion parameters based on a sequence of

images. Dynamic scene analysis is receiving increasing attention from researchers in image

processing and pattern recognition. Three-dimensional projection, optical flow and trajectory

determination are the common approaches for determining object motion from a video sequence. A

brief description of these is given below, followed by a description of the approach that is used in

this work.

Three-dimensional projection techniques entail an inverse projection of the 2-dimensional (2-

D) image frame onto a 3-D space. This approach makes use of the fact that all motion is in fact 3-

D and consists of both translational arid rotational components. A frame is a 2-D representation of

the 3-D scene and mav lead to ambiguity about the real scene since many different scenes could

produce the same 2-D image. In other to get a correct depth model, one must consider the third

dimension and estimate the translational and rotational motion parameters from the sequence of

2-D video frames. Roach and Aggarwal [51 describe such a technique for determining the

movement of the objects from a sequence of images. Another well-known technique is that of

optical flow. Optical flow methods represent motion in the image plane as sampled, continuous

velocity fields. These are considered to be a powerful tool for dynamic scene analysis because they

contain important information about the depth, structure and motion of objects. However, the

techniques for determining optical flow are known to be computationally very complex. One

approach f3r the computation of the optical flows is given by Jain in [6]. Another way of

recovering 3-D parameters is based on trajectory determination for certain key points in the images.

Trajectory -based methods rely on the recognition of the same set of feature points in two or more

* . I.
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%A successive frames, and then utilize the correspondence between them to extract motion information.

Such methods have attracted a lot of attention because they are simpler to compute than optical

flow methods. Sethi and Jain [7] present an algorithm for determining trajectories of certain

!< i, feature points from a sequence of images and use it to extract knowledge about the third

dimens.'on.

It is recognized that some sort of movement compensation must be accomplished in order to

make the frame recovery more meaningful. Since the camera is not stationary but moves with the

parent spacecraft as it approaches the target. the translation and the rotation of the target with

respect to the camera can be significant, and must be estimated and accounted for in our prediction

process. The accuracy of the prediction process is degraded by that portion of the picture area

which can be classified as being nonstationary. Movement-compensated interframe prediction

. offers a promising approach to improving the accuracy of prediction by estimating and

A , compensating for the nonstationary part of the image. In our specific application of target tracking,

we are not so concerned with determining the shape of the object as with its relative orientation to

* the parent spacecraft. This is because the target shape would almost always be known to us a

priori. Shape determination has different applications such as in computerized tomography where a

1 [ physician may be interested in determining the shape and location of a tumor in a patient. For this

reason, we apply movement compensation algorithms to improving the accuracy of prediction

-, instead of the 3-D projection techniques, which usually involve solving of a complex set of

nonlinear equations. In Chapter 5. we describe one of the techniques reported in the literature that

we applied for the extraction of motion data and show that it is possible to improve the accuracy of

-: prediction by compensating for motion.

We demonstrate the performance cf the algorithms via a subjective evaluation of the

reconstructed frames and also via some standard objective measures of performance such as mean-

square error, mean- absolute error and signal-to-noise ratio. These performance measures and the

motivation to use those rather than a visual evaluation alone are described in detail in Chapter 2.
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To demonstrate the performance of the algorithms, we use a set of 8 frames. The frames are from

a video tape of a spacecraft-to-spacecraft docking simulation, and represent the kind of data a

.emote teleoperator may have to work with. A typical video tape would have a frame rate of 30

frames per second. We deliberately selected frames which were not consecutive, but skipped over

several frames in between. This is done so as to create a situation which is much worse than what

a teleoperator would normally encounter and thereby obtain very conservative results. These data

are considered relevant because the main motivation for the work is to aid in remote piloting

operation. Each frame of the image data consists of 512 rows of picture elements (pixels) with 512

pixels in each row. The data are digitized with 8 bits per pixel. which is equivalent to a

representation of the image pixel intensity on a scale of 0 to 255, with 255 representing the

) brightest intensity. The digitization results in a 512X512 array of integers. We use these digitized

frames for evaluating the performance of a fixed predictor versus an adaptive predictor. The

digitized data are processed on a VAX 11/750. In order to better draw any conclusions from the

study, we increased the number of cases by 4 by considering 256X256 pixel subimages.

Furthermore. in order to ease the computational burden imposed by the size of the matrices.

especially the computation of matrix inverses, we process the images in 32x32 pixel subblocks. For

obtaining the full frame, all the subblocks are pasted together in the proper order.

'p€ For a subjective evaluation of the frame estimates and comparison with the original frames,

we use the COMTAL Vision One/20 system. It is a complete image processing system consisting of

a fully integrated LSI-l1 rocessor. image processing electronics and application firmware for image

display. The system allows digitization of images, as well as display of digitized data. i.e.. analog-

"o-analog (A D) and digital-to-analog (D/A) conversion. The digitized frame data were provided

in the UNIX TAR (Tape Archive) format which is not compatible with the VMS operating system

of the VAX 11/750 Frocessor. In order to convert the raw binary data into real number matrices

for processing on the VAX processor, we first arrange the raw data into block structured files

consisting of 512 byte blocks. Subsequently. we use a set of standard tape utilities and also some

special programs. to read the binary files and convert them into real number matrices for algorithm
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processing. The frame estimates obtained via the algorithms are likewise converted into block-

structured binary files and transported to the COMTAL machine for D/A conversion. Chapter 6

gives a discussion of the simulation results. We do the processing in software to investigate the

feasibility of the approach. However, in practice, the processing would be done in hardware with

the use of high-speed adders and multipliers. Since this processing would be done at a ground

control station instead of on board a spacecraft, we are not so constrained by the weight, power.

and size of the processing equipment.

The organization of the thesis is as follows. Chapter 2 presents a formulation of the image

processing problem and describes a set of objective performance criteria used for performance

evaluation of the approaches. Chapter 3 presents the fixed predictor approach. The prediction is

applied to both single and multiple steps of prediction using both a single frame and multiple

I ~. frames. Performance of the algorithm is evaluated using the performance criteria outlined in

Chapter 2. Chapter 4 presents the application of the adaptive predictor technique to the image

processing problem. We also describe the peculiarities of the image processing problem and the

resulting mathematical complexity involving matrix manipulations. The results are presented for a

suboptimal adaptive predictor. Chapter 5 presents the approach used for displacement

measurement between consecutive frames and show the effect on improving the accuracy of frame

estimates. Chapter 6 presents pictures of the frame estimates derived via the various approaches

along with the original pictures and discuss the results. Chapter 7 presents the conclusions of the

work. Based upon our findings, some areas for future research are suggested.

4., *.d,
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CHAPTER 2

IMAGE PROCESSING PROBLEM FORMULATION

2.1. Introduction

In this chapter, we give a mathematical representation of the image processing problem stated

in Chapter 1. For solving the prediction problem, we model the image processing problem as a

discrete-time linear state vector model. This model is used subsequently in Chapters 3 and 4 to

derive fixed and adaptive estimates of video frames. For modeling the image sequence, we

represent a sequence of video frames as a discrete-time nonstationary process with each individual

frame being represented as an N-dimensional vector, f(k). Since the frames are 2-dimensional and

have N1 rows of N 2 pixels each, as shown in Figure 2. therefore, f(k) can be considered to be a

... column vector of (NiXN 2) elements.

As explained in Chapter 1. in order to ease the computational complexity, we process 32X32

pixel blocks of the image instead of the entire 256X256 pixel subimages. Also, we take advantage

of the adjacent-pixel correlation, both within a frame and between successive frames, to define the

system matrices by representing f(k) as a 32x32 matrix instead of a 1024X1 vector. Thus. we can

make use of matrix manipulation algorithms to derive the frame estimates. This statistical model

assumes that each 32X32 block of pixels represents a two-dimensional separable wide-sense

stationary process. In reality, however, the pixels of a block are dependent on the pixels in the

neighboring blocks. This is due to the inherent non-separability of the images. and the resulting

modeling error is seen as blockiness in the reconstructed images where smooth lines are expected.

This can be seen in the simulation pictures presented in Chapter 6. In applications where such

Si degradation is intolerable such as medical applications of computerized tomography, there are

., " approaches for overcoming the border effect. One approach involves using overlapping subblocks

.and subsequently discarding the borders. In our application, however, this minor degradation in

the reconstructed picture quality is not a problem. This is because the main aim in remote piloting

is not a determination of the shape of the object, but its relative orientation to the parent

1f



I xx x x
If 1 0

x x ,xxx x x
f1fN2 x x

x x xxx x x
f 1 f2 f N xxf (k+2)

x x xxx f(k+1)

f (k)

Figure 2. Representation of the video image sequence as an N-dlimensional vector (N=NXN\ 2 ).



12

spacecraft. Also. the shape of the object is almost always known a priori. For these reasons.

processing of the images in 32x32 pixel subblocks is considered a good compromise between picture

quality and computational complexity.

What follows is a mathematical model of the image processing problem.

2.2. Equation Formulation

The source is a sequence of N-dimensional vectors {f(k)).

f(k) = (f 1(k)•f 2(k) .... f(k))T 
, (1)

where N is the number of elements in vector f(k). and k is the frame number in the sequence.

* For the image processing application, each vector f(k) represents a video frame with N

number of pixels. For a frame containing N 1 rows and N2 columns.

N = N1 x N 2 .

The scene dynamics are modeled as a state vector model where a frame is represented as a state

vector. The structure of the first-order model is

f(k+l) = Af(k) + W(K). (2)

where the suffixes k and k+1 are discrete time instants. Matrix A represents system parameters.

and WV(k). the system modeling error.

* In order to improve the accuracy of prediction, it is often helpful to increase the order of the

-. model so as to whiten the modeling error, W. This is equivalent to estimating f(k+l) based upon

not just f(k). but also f(k-l).f(k-2).....f(k-M). In this case, the system model has the following

structure

f(k+l) = Alf(k) + A2f(k-1) + . + AM.+If(k-M) + W(k) (3)

Equation (3) is readily recognized as a higher-order state model where now the state vector is
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[f(k)T f(k-l )T ... f(k-M)T]T (4)

U The observed data is corrupted by channel noise representing the digital data transmission error

associated with the satellite link. The general system model for a first-order model is as follows:

f(k+l) A(k) fk) + W(k) f(k) E RN (5)

where A (W) is the system matrix.

f(k) is the N-dimensional state vector.

W(k) is the modeling error between the actual value f(k+l) and the

predicted value ftilde(k+l/k),

f(k+l/k) is the estimate at time k+l knowing measurements at time

instants up to and including k.

' This state vector model is similar to the model used in Kalman filter application. However,

- here we are not using any observations for updating the estimates at each instant as the new data

becomes available. Instead, we consider a subset of the available frames to predict the next few

frames using the state vector equation only. and show that as more frames are received, we can

derive a better estimate due to a decrease in the number of steps of prediction required.

A prediction of the vector f (k+l) is formed based on the past statistics, f(k)f(k-1)....f(k-

M), using either the fixed or the adaptive predictor described in Chapters 3 and 4.

The prediction, fC(k+l), is obtained from

.elk)

(one-step prediction, f(k+l)/f(k)), or

0. 2. f(k) and f(k-1)

(two-step prediction, (f(k+l)/f(k), f(k-1)). or

3. f(k). f(k-1). f(k-2).... and f(k-M)

(multi-step prediction, (f'(k+l)/f(k). f(k-1)...f(k-M)).

1VA
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The model presented above is used in Chapters 3 and 4 to derive frame estimates via fixed and

adaptive predictors. The estimate. f(k+ 1), is compared with the actual frame f(kl) to obtain both

a subjective and an objective evaluation. For the subjective evaluation, the frame data is converted

from digital-to-analog format as described in Chapter 1 and is displayed on a computer monitor.

The performance is also analyzed using a set of objective measures of performance which are

described in detail in the following section.

2.3. Performance Criteria

Having modeled our system, our next objective is to outline a set of criteria for analyzing and

comparing the performance of various techniques for image data prediction. In this section, we

discuss criteria for an objective evaluation of the reproduced images. It is recognized that the

visual fidelity assessment of reconstructed video images is based upon a subjective evaluation of

the images. This is because the ultimate user of these images is man. Seyler [8] describes visual

communications and the psychophysics of human vision and suggests that the objective of

television is to produce "as accurately as practicable a realistic replica of the natural environment

shown, i.e., (to create) in the viewer's mind the illusion of direct communication." We assume that

the television cameras employed on board the spacecraft conform to an accepted standard and

regard the original video frames as an accurate replica of the real scene. Our objective then is to

reproduce those images with as little distortion as possible. Since the ultimate destination of these

images is a man-in-the-loop, the most important criterion is his accurate perception of the scene.

However. for the purpose of designing communications systems and for comparing

performances of alternative systems and designs, one also requires an explicit evaluation of the

reproduced images. It is widely recognized that to mathematically model man's sense of vision.

pincluding luminance and chrominance vision, is a very complex problem. It is an accepted practice

to employ measurements which are analytically more tractable then the mathematical models of

human vision and have criterion values. This applies both to analog and digital transmissions, and

A
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monochrome and color images. In this work, however, we are concerned with digital transmission

and monochrome images only.

In employing objective measures of performance for assessing visual fidelity of reconstructed

images. it is implied that video distortion is identifiable with errors in reproduction and will result

in a poor performance with respect to the objective criteria employed. Otherwise, the criteria

would have only a limited value or none at all. A number of papers on image processing have

addressed this issue and sought to find a numerically-valued measure of distortion which has a

17 reasonable correspondence with the subjective evaluation by a human interpreter. Hall. Budrikis,

and Mannos [9.10,111 address this problem and suggest some alternatives.

In this work, since we also propose to use subjective evaluation for the reproduced images, we

have restricted ourselves to commonly used objective measures of performance which are described

below.

2.3.1. Standard image quality measures

Some commonly used image quality measures are defined below.

1. Mean-Square Error

One of the most commonly used quality or distortion measure is mean-square error (MSE).

MSE is defined as

MSE = E [T(k) - f(k)]2 ,

where F(k) is the estimate of the frame and f(k). the actual frame.

For an NXN discrete image, MSE may be defined as

12
MSE [f(i,j) - f(i.j)]. (6)

This measure is attractive because it is analytically tractable. Its limitation is that on certain kinds

of images, it does not correspond very closely with human evaluation.

2. Normali2ed Nlean-Square Error

Z-
K
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One can also define an image quality measure based on MSE and energy normalization. It is

called normalized mean square error (NMSE), and it is defined as

N S = MSE between the original and reconstructed frame
4.. NMSE =

variance of the original image

For an NXN discrete image,

N N

S[f(i.j) - f(i.j) j2

pJ. j=l j~l

NMSE = (7)
N N

E 1 [f (ij)]2
i=I j=1

The NMSE measure performs better than the MSE. It maintains the analytical tractability of the

MSE and is equally simple to compute.

3. Mean Absolute Error

Another simple measure is that of mean absolute error (MABSE). Its appeal is mainly due to

the simplicity. It is defined as

1 N N
.,LABSE =- 7_ E I f(ij) - f(ij) I (8)

NxN i=i j=1

where I represents the absolu. value of the argument. The MABSE performs well at low

intensity levels since incremental values at low intensity levels are more noticeable than those at

high intensity values.

4. Signal-to-Noise Ratio

The peak-to-peak signal-to-noise ratio (SNR) is defined as

SNR = 10 log (peak-to-peak signal value) 2  (9)
MSE

where peak-to-peai, signal value is 255 for an image quantized with 8 bits. The SNR is a

common,'y accepted image quality measure and has a reasonably good correlation with the

distortioL in the reproduced image.

The re-sults in Chapters 3, 4. and 5 are tabulated according to these criteria for various cases.

0. .
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CHAPTER 3

W APPLICATION OF A FIXED PREDICTOR FOR IMAGE DATA PREDICTION

C. 3.1. Introduction

In Chapter 3, we present a mathematical model that could be used to describe the dynamical

behavior of the image processing problem. The problem with modeling the scene dynamics as a

state vector model is a complex one since the system matrix. A. of Equation (5) is highly scene-

dependent, and also depends on how rapidly the object is moving. In an application such as video

image processing, where the system and noise models are either ill-defined or not completely

specified, it is feasible to estimate a model using certain properties which are peculiar to video

images. For developing a fixed predictor. we derive a state vector model by exploiting the high

level of adjacent-pixel correlation inherent in video images. This is true both of adjacent pixels of a

frame as well as ccrresponding pixels of adjacent frames. We call this a fixed predictor because we

use a fixed system matrix, A. This predictor is then applied to the most recent set of video frames

received for the purpose of estimating the next few frames of the sequence.

The advantages of using this predictor for image data prediction are as follows:

(1) To carry out on-line prediction of image data using frames as they become available instead of

doing frame refresh, which depends only on the last frame received. Here, we utilize more

* data to try to derive a more accurate estimate.

' * (2) To incorporate modeling error as system noise to improve the accuracy of the prediction even

more. This is not feasible with frame refresh alone.

(3) To derive interframe motion using a set of the last frames received via a determination of

pixel trajectories or other techniques and use the displaced frames instead of the actual ones

for the prediction. Thus. we can do motion compensation which the technique of frame

Lrefresh does not allow.

, - ..-•*,p *~~ **,
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In Chapter 6. we present the pictures of the frame estimates derived via various combinations

of available frames for both single as well as multip'e steps of prediction. The performance

according to the criteria outlined in Chapter 2 is summarized in Tables 1-5. The results obtained

*, with the use of frame refresh only are summarized in Tables 6 and 7 for a comparison. It is shown

that the use of the fixed predictor provides better criterion values (MSE and SNR) than the frame

refresh. However, an evaluation of both the objective and the subjective merit of the reconstructed

* .~frames seems to indicate that there is not a tremendous improvement over frame refresh.

.* 3.2. Equation Formulation

We use a sequence of frames {f(k)1, where each f(x) is an NlXN 2- dimensional matrix. As

explained in Chapter 2, f(k) is considered to be a 32X32 matrix. The structure of the first-order

model is as given in Chapter 2. Equations (2)-(5). The unmodeled dynamics are accounted for by a

model error term. Just as a reference, the general system equation for a first-order model is as

follows:

f(k+l) = A(k) f(k) + W(k) • f(k) E R' (10)

where A(k) is the svstem matrix

f(k) is the N-dimensional (N=NIxN 2) state vector.

W(k) is the modeling error between the actual value f(k+l) and the predicted value

f(k+lk).

f(k~l/k) is the estimate of f(k+l) knowing measurements at time

instants up to and including k. and

the suffixes. k and k+l. are discrete time instants.

Assumption The statistical properties of W(k) are assumed to be zero-mean white Gaussian noise

'v with the covariance given by

(k; V(1)r = Q(k)

.8
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Table 1. Fixed Predictor. Next-Frame Prediciion

f(K+l" = c(K+1.K)*f(K)

:' DESCRIPTION BLK # MABSE 17cSE 1 NMSE SNR (iB) OVERALL IM- i
_ _ __ _ _ _ AGE SNR (dB)

1 3.01 18.6 0.16 35.4

2...G 1.90 8.8 0.08 38.7
FROM 37.4

3 1.9 14.2 0.15 36.6
IMAGE 1 4 1 1.7 5.5 0.05 40.8

"Gi F 4.8 40.0 0.34 32.1.,,. IMAGE 3

FRO 2 2.5 15.1 0.14 36.3"" " FROM 33.6

I 3 4.6 48.0 0.47 ] 31.3
- *' IMAGE 2 4 2.5 11.3 0.11 37.6

j ,E1 5.5 54.0 0.47 30.8~IMAGE 4

2 2.5 14.6 0.14 36.5"RONI 33.3. FROM 2 ____ _____ _____

43 4.7 2.4 0.40 31.9

IMAGE3 4 2.22 I 9.55 0.09 38.3
M1 5.86 57.7 0.49

IMAGE 5. 1
-2 2.74 16.7 0.16 35.9

7-', ..' ROM ,i33.3

IMAGE 3 4.35 37.5 0.35 32.4
-IMAGE 4 4 2.3 10.0 0.09 38.1 _

a . { 1 9.11 6 . 1.45 25.99.',I.M A.GE 6 7 7, 'IM 6 2 9.35 277.0 1.80 24.6

FROM F L5.29 55.8 0.52 30.7
IMAGE 5 4 5.03 54.2 0.47 I 30.8

IMAGE 7 1 5.88 71.9 0.62 29.6

2 6.62 121.0 0.92 27.3
FROM 30.0I. 3 4.7 46.0 0.43 31.5

IMAGE 6 4 3.1 20.3 0.17 j 35.1

IMAGE"-I 1 6.8 87.4 0.72 28.7
IT

2 8.7 193.0 1.4 25.3
FROM 1 28.4

,M,\F 3 5.92 69.3 0.60 29.7
INIAGE 7 _3.42 __2L.2 0.21 I 341

.1
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Table 2. Fixed Predictor, Two-Framne Ahead Prediction

f(K+2) = 4)(K+2.K)*f(K)

DESCRIPTION BLK # MABSE MSE cb NMSE SNR (dB) OVERALL IMAGE
________ _______ _________ _________ SNR (dB)

IA E31 4.93 41.2 0.35 32.0

FRM2 2.65 15.0 0.14 36.4 3.

IAE13 5.82 T 57.0 0.49 30.6

4 2.66 13.3 0.13 36.9
1 4.80 41.4 0.36 32.0

IMAGE 4

FRM2 2.37 11.2 0.11 37.6 3.

3 8.65 108.0 0.88 27.8
IMAGE 2

4 3.04 17.1 0.16 35.8

IMAGES 1 5.84 57.5 0.49 30.5

2 2.87 18.2 0.17 35.5
F ROM 36.38 63.6 0.230.1 32.3

~- .- IMAGE 3
____________ 4 2.88 15.8 0.15 36.1 ____________

IA E61 7.95 135.0 1.18 26.8

I GE62 10.2 240.0 1.91 24.3

FROM 27.1
3 I 6.08 62.9 0.52 30.2

IMAGE 4 1_____ ____ ____

__________ 4 5.81 67.8 0.58 29.8

IMAGE 7 1 [ 9.04 148.0 j 1.27 26.4

eFRM2 12.2 343.0 2.62 22.8
FROM 26.1

<J3 6.89 76.9 0.62 29.3
IMAGE 5

4 5.65 68.4 0.59 29.8
1 7.97 109.0 0.89 27.8

IA E82 10.4 254.0 1.84 2.
*FROM 27.2

IA E63 7.84 103.0 0.79 28.0

_________ 4 3.65 30.9 0.26 33.2

004
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Table 3. Fixed Predicter Three-Frame Ahead Prediction

i(K+3) = O(K+3.K)*f(K)

DESCRIPTION BLK MABSE MSE N NMSE SNR (dB) OVERALL IM-
_ _AGE SNR (dB)

1 5.18 46.7 0.40 31.4
IIAGE 4

2 2.72 14.8 0.14 36.4
FROM 4 31.9

I-G.% 3 7.68 89.4 0.73 28.6-" MAGE I

4 2.96 15.7 0.15 36.2
1 5.27 50.1 0.43 31.1

IMAGE 5 1
2 2.79 17.2 0.16 35.8FROM 31.3

. 3 8.52 104.0 0.84 28.0
.'. ;<IMAGE 2

4 3.35 21.2 0.20 34.9
1 8.94 154.0 1.34 26.3

__ IMA GE 6

2 9.67 224.0 1.78 24.6FROM T1 27.1

3 5.61 61.0 0.50 30.3
LMAGE 3

4 6.01 72.8 0.63 29.5

MAGE7 I 8.41 128.0 1.1 27.1

2 12.0 328.0 2.5 23.0SFROM 26.5
3 6.11 61.4 0.5 30.2

IMAGE 4 10.
_ _ _ _ _5.83 1 67.9 0.6 I 29.8

I.GE1 9.9 179.0 1.47 25.6
IMAGE 3

2 14.8 478.0 3.45 21.3
FROM 24.9

3 ,1 3 8.4 108.0 0.83 27.8
IMIAGE 75

"_,_ . 4 6.1 74.5 0.63 29.4

J..

I'.
04,-
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Table 4. Fixed Predictor. Next-Frame Prediction
Using a Last Two Frames Received

f(K+1) Alsf(K)+A 2*f(K-1)

DESCRIPTION BLK # MABSE MSE To NMNSE SNR (dB) OVERALL IM-
______ ____ ______AGE SNR (dB)

1 4.63 36.7 0.31 32.5
IMAGE 3

FRM2 2.42 13.3 0.13 36.9 3.

IMAGE 2 & 3 5.45 51.2 0.44 31.0
IMAGE I

___________ 4 2.4 10.8 0.10 37.8 _ _____

IAE41 4.68 39.9 0.34 32.1

2 2.19 9.75 0.09 38.2

IMAGE 3 & 3 6.16 60.1 0.49 30.3
IMAGE 2

4 2.29 10.1 0.09 38.1

IAE51 5.28 45.8 0.39 31.5

2 I2.52 13.9 0.13 36.7
FROM 33.7

IMAGE 4 & 3 4.96 41.1 0.33 32.0

IMAGE3____ 4 2.31 10.2 0.09 .38.1 ________

1 8.13 139.0 1.21 26.7
IMAGE 6

2 9.43 224.0 1.78 24.6
AlFROM 27.4

IMAGE 5 & 3 5.52 54.5 0.45 30.8
IMAGE 4

_________ 4 5.16 55.9 0.48 30.7

IAE71 6.13 69.9 0.60 29.7

FRM2 8.03 169.0 1.29 25.8 2.

01IMAGE 6 & 3 5.52 51.3 0.42 31.0

IMAGE 4 3.72 28.8 0.25 33.5 _________

IAE81 6.83 80.1 0.66 29.1

2 8.84 193.0 1.4 25.3
FROM 28.4

IMAGE 7 & 3 6.78 77.1 0.59 2.3

IMAE 64 3.26 23.4 0.198 34 .4 _______
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Table 5. Fixed Predictor, Next-Frame Prediction
Using Last Three Frames Received

f(K+ i) = Al*f(K)+A,*f(K-1)+A 3 *f(K-2)

DESCRIPTION BLK # MABSE MSE % NMSE SNR (dB) OVERALL IM-

I _AGE SNR (dB)
I G 1 4.63 38.8 0.34 32.2
IMAGE 4

2 2.20 9.79 0.09 38.2,FROM 33.1

3 6.55 66.7 0.55 29.9
IMAGE 3 & 4 2.40 10.9 0.10 37.7
IMAGE 2 &
IMAGE 1

1 4.96 42.1 0.36 31.9IMAGES

2 2.43 12.7 0.12 37.1
F 3 5.58 48.9 0.40 31.2

IMAGE 4 & 4 2.44 11.6 0.11 37.5
' 4 IMAGE 3 &

IMAGE 2

1 8.15 135.0 1.18 26.8i IMAGE 6
FO 2 9.44 222.0 1.77 24.7

-. FROM r27.5
3 5.11 48.8 0.40 31.2

IMAGE 5 & 4 5.37 60.0 0.52 30.3
IMAGE 4 &
IMAGE10.66

IMG71 6.42 77.2 0.629.3
-~ IMAGE7

:', 2 9.11 207.0 1.58 25.0
-*.FROM r28.5

3 5.35 47.7 0.39 31.3
* IMAGE 6 & 4 4.23 37.2 0.319 32.4

IMAGE 5 &
IMAGE 4,o

1 6.89 82.8 0.68 29.0
IMAGE 8

FROM 2 9.89 233.0 1.69 24.5 27.9
3 '6.91 76.6! 0.58 29.3

L.IMAGE 7 & 4 3.62 r 29.1 - 0.25 33.5
IMAGE 6 &
IM'!AGE 5

"04 . r14.P.f'
FS
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Table 6. Next-Frame Prediction by Frame Refresh

DESCRIPTION BLK # MABSE MSE % NMSE SNR (dB) OVERALL IM-
AGE SNR (dB)

1 3.37 22.5 0.19 34.9
IMAGE 2

2 2.14 8.8 0.08 38.7
FROM 36.2

3 3.35 22.6 0.19 34.6
IMAGE 1 4 2.16 8.94 0.08 38.6

1 5.07 44.2 0.37 31.7
IMAGE 3 2 2.72 18.2 0.17 35.5

FROM 33.2
3 5.04 44.8 0.38 31.6

IMAGE 2 4 2.76 16.8 0.16 35.9

1 5.73 59.1 0.51 30.4
IMAGE 4

2 2.70 15.7 0.15 36.2
FROM 32.3

3 5.87 62.4 0.54 30.8
IMAGE 3 4 2.76 16.6 0.16 35.9

1 6.07 61.9 0.53 30.2
NMAGE 5

2 2.90 17.8 0.17 35.6
FROM 32.1

3 6.22 65.1 0.56 30.0
IMAGE 4 4 2.9416.3 0.15 36.0

1 9.23 171.0 1.49 25.8
IMAGE 6

2 9.42 226.0 1.80 24.6
FROM 25.0

3 9.75 189.0 1.65 25.4
IMAGE5 4 10.0 249.0 1.96 24.2

* 1 6.09 76.2 0.66 29.3
IMAGE 7

2 6.85 132.0 1.00 26.9
FROM 27.8

3 6.10 78.4 0.68 29.2
IMAGE 6 4 7.49 147.0 1.10 26.5

1 7.01 94.2 0.77 28.4
IMAGE 8 2 I

9.04 206.0 1.49 25.0
FROM 26.2 I

3 6.95 95.0 0.78 28.4
IMAGE 7 4 9.92 233.0 1.64 24.5

L __ I _ _ _ ____ _ I
*
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Table 7. Frame Refresh. Two-Frame Ahead Prediction

f(K+ 1) = Al*f(K)+A 2 f(K-1 )+A 3*f(K-2)

DESCRIPTION BLK # MABSE MSE % NMSE SNR (dB) OVERALL IM-
AGE SNR (dB)

1 5.11 44.6 0.38 31.6
IMAGE 3

2 2.68 16.0 0.15 36.1
FROM 33.4

3 5.08 45.3 0.38 31.6
IMAGE 1 4 2.70 14.4 0.14 36.6

1 5.14 47.2 0.41 31.4
IMAGE 4

2 2.54 13.2 0.13 36.9i >.FROM 33.4
3 5.19 48.4 0.42 31.3

IMAGE 2 4 2.58 11.6 0.11 37.5

1 6.11 63.9 0.54 30.1
~zj IMAGE 5

2 2.91 17.6 0.17 35.7
FROM 32.0

3 6.18 66.5 0.57 29.9
IMAGE 3 4 2.93 15.9 0.15 36.1

1 8.26 141.0 1.23 26.6
IMAGE 6

2 9.74 228.0 1.81 24.6
FROM 25.3

3 8.59 153.0 _ _1.34 26.3
IMAGE 4 4 10.4 249.0 1.93 24.2

1 9.31 155.0 1.33 26.2
IMAGE 7

F M2 11.8 330.0 2.52 22.9
FRONT 24.1

- 3 9.64 166.0 1.43 25.9I IMAGE 5 4 1 12.7 366.0 2.74 22.5

1 8.0 111.0 0.91 27.7
_ IMAGE 8

2 10.4 259.0 1.87 24.0
FRO 1 25.3

3 1 7.73 106.0 0.87 27.9Is-. , IMAGE 6 4 11.5 292.0 2.06 23.5

I
,N0"
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where Q(k) is a positive semi-definite matrix and 8, is the Kronecker delta

11 for k=I

to for k=1"

Algorithm for fixed prediction in the absence of modeling error.

(1) Relation between prediction f(k+l) and f(k),

f(k+l/k) = A(k) f(k) (1)

(2) For multiple steps of prediction, the relation between f(k+M/k) and f(k) is given by

f(k+;NM/k) = 4(k+Mk) f(k) (12)

where D is the state transition matrix.

(D(m,m) - I
(13)

C(m=n) A(m-1). A(m-2) ... A(n)

A generalized state model is

f(k) = D(k.k-M) f(k-M) + W(k). (14)

It is seen that the fixed predictor resembles the standard estimation technique of Kalman filter

with one exception. Here. we are not using a measurement vector to update the parameters

between samples. However, the fixed predictor allows us to update the state vector by using

the most recent set of frames, and thus provides a better estimate as the number of steps of

prediction is lowered.

3.3. Performance Evaluation

In order to find a suitable system matrix A, we used the fact that video images are

characterized by very high pixel correlation. both in the space domain and the time domain. i.e.. in

the temporal direction. We assume that the pixels are zero-mean samples of a separable Markov

process. Then, by assuming a fixed adjacent-pixel correlation, the structure of the A matrix is as

W~ el.,
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shown in Figure 3. This correlation structure is used to describe both spatial and temporal

correlation. i e., between adacent pixels of a frame as well as between corresponding pixels of

adjacent frames. We assume a fixed pixe! correlation of 0.96 for both intraframe and interframe

"P correlation. This results in an A matrix , -own in Appendix B for a first- order system for one

frame-ahead prediction using the last frame received. Other matrices are selected likewise to

increase the system order for increasing the accuracy of prediction.

Tables 1-5 show the results of applying this algorithm to obtain frame estimates for the next

frame (Table 1), two-frame ahe-.d prediction (Table 2). three-frame ahead prediction (Table 3),

next-frame prediction using the last two frames received (Table 4). and using the last three frames

(Table 5). The results of the frame refresh technique applied to the next-frame prediction are

summarized in Tables 6 and 7 for a prediction based on the last frame received, and the last two

frames. respectively. These are presented for a contrast with the fixed predictor results. It is seen

from these tables that the fixed predictor provides better criterion values than frame refresh in

almost all the cases. The results in Tables 1-5 were obtained without compensating for motion

compensation. It is shown in Chapter 5 that it is possible to improve upon the performance of the

predictor by estimating and compensating for the interframe displacements. The pictures of the

frame estimates are presented in Chapter 6. From a subjective evaluation of -he reconstructed

,- ,- frames, it appears that there is not a tremendous advantage to using a fixed predictor over a simple

frame refresh in spite of what the criterion values indicate. All these results and a subjective

evaluation of the reconstructed frames are discussed in detail in Chapter 6.

..

-.
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CIIAPTER 4

APPLICATION OF AN ADAPTIVE PREDICTOR FOR LMAGE DATA PREDICTION

4.1. Introduction

In the case of a fixed predictor, we assume a certain model for describing the interframe

relationship of a video sequence. That model is then used for prediction of frames using a set of

• ,~ past frames. In the case of an adaptive predictor, we estimate the state vector model using the

interframe correlation of the available frames, and by making an assumption that the model can be

* approximated as a wide-sense stationary random process. In an application such as remotely

pi'oted spacecraft, it appears to be a reasonable assumption especially in the docking mode which is

characterized by very slow motion.

The approach used for developing the adaptive predictor is the classical parameter estimation

technique of generalized least squares. We seek to find an optimal adaptive predictor which would

provide a ieast mean-square solution to the prediction problem. i.e.. minimize the square of the

",. error betv.xeen the criginal and "he reconstructed frames. It is shown in this chapter that the ill-

conditioned nature of the image processing problem. specificallv the sample covariances, render it

compathaic.nallv a very ccmplex problem. It is shown that when we represent the images by the

minensity \ alues of ,he pixels, the resulting matrices are almost always singular or nearly singular.

'\ !. In the :rrage processing problem, the image degradation is represented as a transformation. Hence.

Sr cver the original image from a degraded one or to reconstruct images often requires

.po'naain c! inverse transformations, which is mathematically represented as a mati x inversion

vr-l_-M 1r is shown that suc matrices have zero or near-zero eigenva~ues and thus it is not

.',, le -c find an rinerse. We show that the well-known technique cf adding a disturbance along

" .a- .nal "s stab:lize singular matrices does not overcome the problem of the singularity of these

:: 'es \e -hen explore the use of Singular Value Decomposition (SVD) in order t, isolate and

" ad-cl:id -iear zero singular values and attempt to find an inverse by effectively reducing "he

: ' r:i,"h matrx. It is shown that the large variation in the singular values effectively amplif.es

,%°N
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the noise and makes the recovered image unacceptable in terms of visual fidelity. Because of the

mathematical complexity associated with the optimal adaptive predictor, we use a suboptimal

adaptive predictor which still uses the previous samples to derive the frame estimates. The intent

is to evaluate the performance of this suboptimal predictor relative to that of the fixed predictor

and frame refresh.

4.2. Equation Formulation

As mentioned above, the algorithm for the adaptive preditor is based on the standard

technique of generalized least squares parameter estimation. The equations summarized below can

be found in any standard textbook or reference in estimation theory and in [3]. A prediction of

* vector f(k). namely, f(k), is formed based on previously reconstructed vector f^(k-1) as shown in

Figure 4.

f(k) = B(k) f(k-1) . (15)

where B(k) is a time-varying predictor and f(k) is the kth frame of the sequence. The prediction

can also be based upon a set of previously reconstructed vectors. {f(k-1).f(k-)....f(k-M)}. For a

non-time-varying predictor,

f(k) = Bf(k-l). (16)

The B vector can also be chosen to be a diagonal matrix,

B = diag(b1 .b2 ..... bN)T , (17)

in which case each element of the estimated vector fi(k) depends only on the corresponding element

of the pre,,ious reconstructed vector, f(k-1), i.e..

f1(Q = bTf(k-1).
'I

Using M previously reconstructed vectors.

f(k) = B(k) g(k) (18)

where g(k) is a column vector consisting of the M previous vectors
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g(k)" = (f(k-1) T f(k-2). f(k-M) T ) (19)

Equation (18) is a generalization of Equation (15) using multiple steps of prediction. j
The prediction error e(k) is

e(k) =f(k) - B(k) g(k). (20) 1

Y In the matrix form. e(k) can be expressed as

f 1(k-1)f,(k-1)

e(k) f - . (21)

[_. [s(k) |b.T(k) f 1(k-M)

f 2(k-M)

fN(k-M)

Here. we are assuming that the quantization error is negligible. i.e.,

i(k) = f(k).

The predictor vector B(k) consists of N vectors bi(k) corresponding to each element of the vector

f(k), i.e..

B(k) = (bl(k) b2(k) ... b.(k))T. (22)

where each b,(k) consists of NxN coefficients for the i-th element of f(k). The error vector e(k) is

given by

e,(k) = f,(k) - b;(k)T g(k) . for i = 1.2. N . (23)

At this point, we select the standard parameter estimation technique of least mean squares (LMS) I
for developing an optimal predictor. In other words, an optimal predictor is one that minimizes the

reconstruction error. e(k). Using this criterion, the optimal estimate would be the LMS estimate. I
0
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The LMS estimate f(k) is obtained by choosing the predictor matrix B(K) such that the mean

square reconstruction error is minimized, i.e.,

: - MSE = E{e,(k) 2 } is minimized for all i = 1,2,...,N (24)

The error covariance matrix R,(k) is defined as

A. T
R,(k) =E{e(k) e(k)T} (25)

Min Je,(k)2} = Min{Diagonal elements of Re(k)1 (26)

= Minitr R(k)}

The optimal predictor B(K) minimizes the trace of R,(k) for an LMS criterion,

VBk){tr Re(K)1 = 0. (27)

'Using simple matrix manipulations and the following properties of a trace operator,

tr (A+B) = tr A + tr B. andI
T

tr A = tr A.

tr{R,(k)} = tr E{e(k) e(k)} (28)

T T T

, = tr E{([fL(k)-B(k) g(k)][f(k) -g(k) T B(k) r':

= triR(k.k)-B(k) Rgf(k)-Rg (k) B(k)' + Bk,)R,(k)Bk)

= tr(R(kk)) - 2 tr(B(k)RS:(k)) (29)

+ tr(B(k)R9(k)B(k )T )

- where the fcllowing definitions f.r covariance matrices aptly

AT.-," fk ~ ~ , r  (30 )

~R9(k) =Eig(k) gl'k) r}

-- R,,(k) =Eig(k) f(k) T .

The oprnmal pfedictor B(k). namely, B+ is such that it min:mizes tr{R,(k)I, i.e.. from Equations

(29, and (18)

C,'.
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B =BWk such that

VB~k)[tr R(k)) - 2 tr(B(k)Rr(k)) + trIB(k)R,(kJB(k)T)I = 0 (31)

Using simple matrix manipulation and the follow.ing rules of matrix gradient erations.

VB tr (BA) =A T and (32)

*VB tr (BABST) = BA T+ BA . for the optimal predictor .

V,(,,) tr (Rek) = -2 Rzf(k)T + B(k)(Rg(k) + RI(k )T) = 0(33)

Since R Wk is symmetric, assuming that its inverse exists. the LMIS predictor.

B+(k) = Rsf(k )T Rg(k)-' .(34)

The LMS prediction error,

*e (k) = ik- 'kgk)(35)

together with R,,(k) and Rg k). can be approximated using the covariance of the original data.

Eff(k-l)f(k ) T ) R(k-l.k)

Rgrk) Ejf(k-2)f(k)T1 R(k-2,k) an

-Ef(k-M)f(k T  R(k-M.k)

*R 9k)=W (36)

~E{f(k-M)f(k-1 )Tj ... E{ f(k-M)f(kM) T}

R(k-1.k-1) ... R(k-l.k-M)

UR(K-N*IK-1) . R(K-M.K-M)

For a single-step prediction.

Rgf(k) = R(k-l.k) and (37)
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~R/~k) = R(k-l.k--1).

U In the following section, we address the mathematical problems of using the optimal predictor

der:ved in this section for obtaining the frame estimates. The equation for the optimal predictor,

Equation (34). assumes that the frame to be estimated is available for deriving the autocorrelation

between previous frames represented by g(k) and f(k). Hence. n practice, one must somehow

estimate this autocorrelation. We do this by assuming that the image sequence is represented by a

/ i zero-mean separable Markov process which is wide-sense stationary. Specifically, the equations for

Sa suboptimal predictor are derived as follows: The optimal predictor is given by Equation (34).

i.e..

B+(k)=R,(k) T Rg(k)-. (34)

in the case of the next frame prediction using only the last frame received, i.e.. fr(k+l) using only

f(k). the optimal predictor is given by

B t (k) = E{f(k) f(k-I) r } Eif(k-1) f(k-i)r}-1  (38)

= {f(k) f(k-1)} {f(k-) f(k-1) T -1 . (39)

We derive a suboptimal predictor by using the wide-sense stationarity on the covariance

* stationarity of the image sequence as follows:

, Using Equations (18) and (39). the frame estimate is

f(k) = f(k-l) fk- 2 )T} {f(k-l-) f(k-l f(k--). (40)

Ae see, this approach would require at leas' a couple of frames in order to estimate the next

rame of the sequene Equation (34) assumes that an inverse of R (k) exists. The mathematical

details of the problem are discussed in the next section.

4.3. Application of Singular Value Decomposition (SVD) to the Image Processing Problem

The equation for tne optimal feedback predictor. Bt, given by Equation (34). assumes that an
- inverse of R (k) exist's. When we .pply the adaptive predictor algcrthrn for frame prediction

% V!
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using the last two frames received according to Equation (40), we find that the matrix R(k) is

singular. This is because it has many zero eigenvalues as seen in Figure 5a. We then try to make it

nonsingular by adding a small constant to the diagonal of R (k). Figure 5b shows the resulting

eigenvalues. It is obvous that the matrix is so ill-conditioned that it can not be inverted. In such

problems involving singular matrices, one would compute the generalized inverse which is the

minimum norm solution. Equation (40) may be rewritten as

f(k) = [f(k-1) f(k-2) T (f(k-1) T) (41)

where I represents the Moore-Penrose pseudoinverse. For a matrix A, the Moore-Penrose inverse is

given by

A t = (ATA) - ' AT• (42)

Since the matrix [f(k-l)f(k-l)T] is singular, its rank is less than the order of f(k-1) or the

number of unknowns. Hence, there is no unique inverse for this matrix. In the case of an

underconstrained problem requiring a solution of a set of linear equations of the form

Ax = b.

we use singular value decomposition (SVD) which guarantees a minimum norm solution to the set

of equations represented by Ax=b. Hence, to derive an optimal predictor, we use SVD of f(k-l)T

to find a unique solution to an otherwise indeterminate problem.

The SVD problem involves spectral decomposition of the matrix. A. in Equation (42) as

follows. In the case of real matrix A,

A = 1VT ,  (43)

where U and V are unitary matrices such that the columns of U and V are composed of a set of

orthonormal eigenvectors. U is the row eigenvector system of A and V is the column eigenvector

s''s-tem of A. The matrix E is a diagonal matrix which has singular values of A (the positive

square-roots of the non-zero eigenvalues X, of ATA) on its diagonal. The eigenvectors u i are the

spectral components of the observation space and the eigenvectors v, are the spectral components of

L

|'
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E.VAL. 1 = 0.000E+00 E.VAL. 17 = 0.272E+01
E.VAL. 2 = 0.OOOE+00 E.VAL. 18 = 0.478E+01
E.VAL. 3 = 0.000E+00 E.VAL. 19 = 0.755E+01
B.VAL.. 4 =0.000E+00 E.VAL. 20 = 0.120E+02
E.VAL. 5 = 0.000E+00 E.VAL. 21 = 0.178E+02
E.VAL. 6 = 0.000E+00 E.VAL. 22 = 0.205E+02
E.VAL. 7 = 0.000E+00 E.VAL. 23 = 0.287E+02
E.VAL. 8 = 0.000E+00 E.VAL. 24 = 0.317E4-02
E.VAL. 9 = 0.OG0E+00 E.VAL. 25 = 0.328E+02
E.VAL. 10 =0.000E+00 E.VAL. 26 = 0.804E+02
E.VAL. 11 = 0.000E+0O. E.VAL. 27 = 0.930E+02
E.VAL. 12 = .COOE+00 E.VAL. 28 = 0.119E+03
E.VAL. 13 = 0.000E+00 E.VAL. 29 = 0.159E+03
E.VAL. 14 = 0.GOOE+00 E.VAL. 30 = 0.247E+03
E.A.15 =0.OOOE+00 E.VAL. 31 =0.722E+04

14E.VAL. 16 = 0.OOOE+00 E.VAL. 32 = 0.522E+07

Z4 (a)

E.VAL. 1 = .OOOE+00 E.VAL. 17 = 0.360E+04
E.VAL. 2 = 0.000E+00 E.VAL. 18 = 0.360E+04
E.VAL. 3 = .OOOE+00 E.VAL. 19 = 0.361E+04
E.VAI'L. 4 = 0.OOOE+00 E.VAL. 20 = 0.361E+04
E.VAL. 5 =0.OOOE+00 E.VAL. 21 = 0.362E+04
E.VAL. 6 = .000E+~00 E.VAL. 22 = 0.362E+04
E.VAL. 7 = .OOOE+00 E.VAL. 23 = 0.363E+04
E.VAL. 8 =0.000E-+00 E.VAL. 24 = 0.363E+04
E.VAL. 9 =0.OOOE+00 E.VAL. 25 = 0.363E+04
E.VAL. 10 =O.000E+00 E.VAL. 26 = 0.368E+04
E.VAL. 11 =0.OOOE+00 E.VAL. 27 = 0.369E+04
E.*VAL. 12 =0.OOOE+00 E.VAL. 28 = 0.372E+04
E.VAL. 13 =0.OOOE+00 E.VAL. 29 =0.376E+04
E.VAL. 14 =0.OOOE+00 E.VAL. 30 = 0.385E+04
E.VAL. 15 =0.000E+00 E.VAL. 31 = 0.108E+05
E.VAL. 16 =0.000E4-00 E.VAL. 32 = 0.522E+07

(b)

Figure 5. Singularitv of the image processing matrices.
(a) 0The eigenvalies of [f(k-1) fck-l)j. where f(k-I) corresponds to the first 32X32
block image of Image 2. )
(b) The eigenvalues of tf(k-1) f(k-l) + 3600 *1], where fRk-1) corresponds to the
first 32X32 biczk of Image 2 and I is the identity matrix.
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the parameter space. The value of each Xi determines the amplitude of the corresponding spectral

components u i and v i . The generalized inverse to the matrix A of Equation (43) is defined as

T T
A=V U. (44)

Using Equation (43). the generalized inverse solution to the set of linear equations. Ax = b, can be

expressed as a linear combination of the eigenvectors v as

x = £v i  ujb (45)

The weighting factors in this linear combination are the quantities in the square brackets. The

products uiTb represent the amplitude of the ith spectral component contained in the observations,

b. This quantity is divided by the response X,. Thus, the quantity in the brackets represents the

amount of the ith spectral component contributing to the solution parameter-vector x. The equation

shows that the observational errors or model errors in defining the system dynamics are amplified

by a factor. 1/X,. Thus eigenvectors that are poorly represented in the sense that they are

associated with small values of Xi cannot be determined as reliably as the better represented

eigenvectors. For limiting the influence of the eigenvectors with very small eigenvalues, one

approach is to eliminate the small eigenvalues by simply adjusting the value of the apparent rank

of the matrix A. This is done via SVD. We now apply this approach to try to find an approximate

inverse of f(k-1)T which would give an acceptable prediction.

0 When we use the SVD of f(k-1) T . we find that an acceptable solution to the problem is still

not possible. This is because of the ill-conditioned nature of the matrix which makes its non-zero

singular values vary over a wide range as is seen from Figure 6. The values in Figures 5-7 relate to

prediction of Image 3 from Image 2 and Image 1. When we attempt to restore the image by

discarding the zero singular values and use the non-zero ones, we find that the smaller singular

values effectively increase the contribution of the noise term and make the visual quality of the

image unacceptable. The use of only the highest singular value provides acceptable values for the

objective criteria but results in minimizing a lot of detail in the reconstructed picture. We attempt
S ' , " " . . ' " " " ' ' " " . " ": " , , ' r w" . " , " o " . • ," . ' .
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S.V. 1 = 2285.074 S.V. 17 = 0.000
S.V. 2 = 26.524 S.V. 18 = 0.000
S.V. 3 = 0 .268 S.V. 19 = 0.000
S.V. 4 = 6.970 S.V. 20 = 0.000
S.V. 5 = 5.078 S.V. 21 = 0.000
S.V. 6 = 3.395 S.V. 22 = 0.000
S.V. 7 = 2.349 S.V. 23 = 0.000

S.V. 8 = 1.788 S.V. 24 = 0.000
S.V. 9 = 0.000 S.V. 25 = 0.000
S.V. 10 = 0.000 S.V. 26 = 0.000
S.V. 11 = 0.000 S.V. 27 = 0.000
S.V. 12 = 0.000 S.V. 28 = 0.000
S.V. 13 = 0.000 S.V. 29 = 0.000
S.V. 14 = 0.000 S.V. 30 = 0.000
S.V. 15 = 0.000 S.V. 31 = 0.000
S.V. 16 = 0.000 S.V. 32 = 0.000

(a)

106.000 102.000 101.000 98.000
95.000 98.000 93.000 94.000
109.000 104.000 103.000 100.000
96.000 98.000 94.000 95.000
104.000 106.000 105.000 100.000
98.000 97.000 95.000 96.000
104.000 109.000 104.000 101.000
98.000 100.000 96.000 99.000
99.000 109.000 103.000 103.000
97.000 101.000 96.000 99.000
101.000 107.000 103.000 103.000
97.000 101.000 96.000 97.000
100.000 107.000 103.000 103.000
97.000 100.000 96.000 99.000
101.000 107.000 103.000 103.000
98.000 98.000 97.000 101.000

(b)

SFigure 6. Singularity of the image process In Lmatrices.

(a) The singular values of f(k--)'. where f(k-) corresponds to the first 32x32 blockof Image 2. (b) Pixel intensites corresponding to the first ,SX8 block f Image 2.

II ' A
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S.V. 1 = 0.171 E +24 S.V. 17 = 0.000 E +-00
S.V. 2 = 0.108 E +24 S.V. 18 = 0.000 E +00
S.V. 3 = 0.822 E +23 S.V. 19 = 0.000 E +00
S.V. 4 = 0.680 E +23 S.V. 20 = 0.000 E +00
S.V. 5 = 0.388 E +23 S.V. 21 = 0.000 E +00
S.V. 6 = 0.656 E +16 S.V. 22 = 0.000 E -00
S.V. 7 = 0.253 E +16 S.V. 23 = 0.000 E +00S.V. 8 = 0.160 E ±16 S.V. 24 = 0.000 E +00
S.V. 9 = 0.159 E +10 S.V. 25 = 0.000 E +00
S.V. 10 = 0.182 E +09 S.V. 26 = 0.000 E +00
S.V. 11 = 0.572 E +08 S.V. 27 = 0.000 E +00
S.V. 12 = 0.253 E +08 S.V. 28 = 0.000 E i-00
S.V. 13 = 0.111 E +02 S.V. 29 = 0.000 E +00
S.V. 14 = 0.361 E +01 S.V. 30 = 0.000 E +00
S.V. 15 0.184 E +01 S.V. 31 = 0.000 E +00
S.V. 16 = 0.518 E +00 S.V. 32 = 0.000 E +00

(a)

0.333 -1.250 0.000 -0.500
-1.750 2.000 -1.750 0.250
3.250 -0.800 0.400 0.600

-1.400 1.400 -1.000 0.600
-1.750 0.400 1.400 -0.800
0.200 -0.600 -0.600 0.000
0.000 2.600 -0.400 -0.200

-0.800 1.600 -1.200 2.200
-4.250 3.600 -1.400 1.600
-2.200 2.000 -1.600 2.200
-0.750 1.600 -0.800 1.200
-2.000 2.000 -1.200 0.200
-2.250 2.200 -0.800 1.200
-2.000 1.600 -1.600 1.600
-0.750 2.000 -0.600 1.200
-1.000 -0.200 -0.800 2.200

0 (b)

Figuare 7. Singularity of the image processingmatrices.
- F(a) The singular values of f(k-1 where f(k-1) corresponds to the first 32x32 block

of Image 2 after subtracting the local mean taken over a 5x5 pixel window. (b) Pixel
intensities corresponding to the first SxS block of Image 2 after sUbtracting the local
mean.
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to lower the range of the non-zero singular values by adjsting the mati x f(k-I ) s f s.

Instead of choosing flk-1) to represent the pixel intensities. we subtract from each pixe! value its

local me,.n taken over a 5X5 pixel window centered over thaT pixel. The resulting values for an

S'x8 pixel subblock and the corresponding singular values of f(k-1) are shown in Figure 7 The

p new matrix ;s still -een to be ill-condt;oned. preventing an acceptable solution to the iv-rse

problem.

To eliminate the mathematical complexities involved in the derivation of the cptimal

predictor. we derive a suboptimal predictor which still uses the past frames to form a prediction.

-This is not unreasonabe, since any on-line estimation algorithm must be computationally simple to

implement. The equation for the suboptimal predictor for the next frame prediction using the last

two frames is as follows:

* f(k) = [f(k-l) f(k--2)T ] f(k-1)/ I f(k-1) 2 (46)

where Ii. I represents the Frobenius norm

For a matrix A.

.T

1, A I =trace(A A).

The results derived via the suboptimal predictor are discussed briefly in the following section and

in greater detail in Chapter 6.

N4.4. Performance EvaluationN

-The performance of the suboptimal predictor is summarized in Table 8 for one-frame ahead

predict;on. using the last two frames received. The corresponding results for the fixed predictor are

given in Table 4. and for frame refresh in Table 7. The estimates derived via this pedictc:" are

shown ir Chapter 6. From an evaluation of the mean-square error and SNR values, we can see that

the suboptimal predictor which uses the past statistics to derive the estimate, matches the

perfDrmance cf the fixed predictor. The fixed predictor is seen to give hetter criterion valses than

% %
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csn ~ ~ C ir m~: ceshweer. sub.jecti\'e couajhiv is seen tc. be less acceptable than

3 N~ "'here icsnit appear to the a significant advantage of using this techniquei over

.....e \A: h!lcb does not require any computations. I-or the adaptive predictor case. if we can

..r. a rn-u~ationzJ solution to the problemn of inverting an extremely ill-cniindmtite

* b r~ at~are ex-,-ec'ed to be better than what the fxed predictor provideos. In situations where a

J.r-ct >uo,'es aigoritbm produces unusable restored images due to the ill-conditioned natue

Of l problem, cne approach suggested in [121 is to apply the SVD technique to both row arnd

7 column matrices separately. Tht use of this approach for reconstructing the images merits further

:nv.estigat:cn and is a topic for future research in this area.

t L .

4. i

6
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CHAPTER 5

APPLICATION OF.MOTION ESTIATION FOR IPROVING THE ACCURACY

OF FRAME PREDICTION

A large number of applications requiring image processing involve images of moving objects.

For example. in our application of satellite image processing for rendezvous and docking. the

scenario is characterized bv both a moving target as well as a moving camera. In such cases, the

nonstationarity of the images renders the image prediction a more complicated process. To

accurately predict the image data in advance, one must estimate and account for the interframe

motion. A number of researchers have addressed this issue of determining the motion of an object

from a sequence of images. Motion compensation can be thought of as a filtering process where the

interframe motion is considered a noise. To the extent that the signal and noise have different

power spectra. one can filter the noise representing the motion. For a stationary random process.

this could be done via Wiener filtering. However, scene dynamics cannot accurately be modeled as

a stationary process. Hence, one must look for alternative means of motion compensation in the

case of video images.

Dubois and Sabri [13] apply temporal filtering to detect that part of the image which is

nonstationary between frames, and use motion compensation to reduce the noise in image

sequences. Bowling and Jones [14] use a two-step displacement procedure to determine pixel

a. displacements between frames. Broida and Chellappa [15] give a recursive estimation procedure for

determining object motion parameters from a sequence of images. In our work, we applied the

* algorithm presented by Jain and Jain in [16] for measuring the displacement between consecutive

frames in integer number of pixels. There are algorithms available to measure the pixel

displacement with subpixel accuracy. Limb and Murphy [17] present such an algorithm for

measuring the speed of moving objects from TV signals: Cafforio and Rocca suggest an algorithm

* for measuring small displacements in television images in [181. The algorithm proposed by Jain

6e

Al.-
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V and Jain entails diiding the image frame into subblocks and applying a 2-dimensional directed

search procedure to fnd the displacement which optimizes a ctrtam criterion. In our application.

the optimiza ic critericn is chosen as the mean- square error betv ! en the corresponding bocks of

the consecutive frame:. This is consistent with the criteria used for a comparison of the f'.x--d and

adaptive predictor results. This displacement is applied to the f:ame estimate to impro'.'e the

accuracy of prediction. The details of the algorithm are summarized in the following section.

5.2. Motion Estimation

Jain and Jain [161 give an algorithm for measuring the interframe motion for digitized images.

This procedure makes use of the fact that in practice, a large pa-t of the motion in a scene can be

approximated by piecewise translation of several areas of a frame. The procedure consists of

segmenting an image into fixed size, rectangular blocks. It is assumed that each of these blocks is

undergoing independent translation. Then the rotation and zooming, etc.. of larger objects in the

scene are approximated by a piecewise translation of these smaller blocks.

We used 32X32 subblocks consistent with the block sizes used for other algorithm

ccmputations. Let U be an NXN size block of a given frame in a sequence. Let V be an

(N+2p)x(N-2p) size subblock of the consecutive frame cf the sequence, centered at the same

spatial location as U. Here. p is the maximum displacement allowed in either direction in integer

number of pixels. A mean distortion function, the mean-square error between U and V, is used as

the criterion for determining the direction of minimum distortion (DMD) between the two frames;

in other words, the displacement D that minimizes the mean-square error between U and V.

N N

0i D(i~j - Y" Y" g(u(mn) -v(n+in+j)), -p ( i.j < p, where

g(x) = x" .orresponds to the mean-square error between U and V In general. g(x) can be any

positi'.e and increasing function of x. We use the mean-square error criterion since it is consistent

with the perf orrnan.c measures used in this work. Also, this allows us to obta.n results about

[04
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improvement in frame prediction in mean-square error (or signal-to-noise ratio) terms.

The following assumption is made about the mean distortion function. If D(q,l) = minlD(i.j)}

then for m = i-q. n = j-1. the functions

D 1(Imn Ini) = D(ij)-D 0 (q.), m > 0. n , 0

D,(ImI I n)=D(ij)--Do(q,l) m > 0, n K, 0

D3( I m, I n I) = D(ij) - Do(q.l). m < 0. n K, 0

D,( ImrnI InI)= D(ij)- Do(q.l) , m K, 0., n :> 0 ,

where I. I represents the absolute value. The above assumption means that the distortion function

increases monotonically as we move away from the direction of the minimum distortion.

With the above assumption. the algorithm [16] uses a 2-dimensional directed search method

for finding the DMD. The search consists of testing five locations in a frame at a time and

successively reducing the area of search until the plane of search reduces to a 3X3 block. In the

final step, all nine locations are searched to ind the DMD and the minimum mean-square error.

The DMD and the minimum mean-square error for the entire frame are obtained by averaging over

all subblocks.

The algorithm is as follows:

For any integer p>O.

N(p) = (i.j) ; -p 4 i.j < p)

M(p) = (0,0) , (p.0). (0,p) , (-p.0) . (0.-p)}.

Step 1: (Initialization)

I~i.j) = oc .Uj) f N(p)

n'= [log 2p]. [ I is a lower integer truncation function

n m ax 12 ,2 ' -1 I

q 1.0
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-~ -. Step 2 M Mni'

Step 3: Find (j)E AVix) such th-at Di i-q~j4! is, Min .imum. !f i=O and A O, go to Siop 5

o*harvwise. go to Step 4

Step 4: q q+ i 1. j i M(n) - M'(n) - (-i.-j); go to Stop 3.

Step 5: n -. ,'2. !f n=l. oc to S-te- 6: otherwise, go to Step 2.

Step 6: Find (ij) E NOs) such that D(itq,j2'l) is mninimum. The DMID is Lhen given L-Y

q- q-;-i , I +j,

The proof' of the algor-ithmi can be found in '16].

5.3. Perforzmance Evaluation

4 The above algorithm is used to derive the displacement between the estimates derived by the

5 xed T-rdictor- algorithm and the actiual framnes. The results for some of these estimates are

tabulated in Table 9. The improvement in the prediction is apparent from the reduction in the

NISE and the corresponding increase in the SNR. It is show,%n that an improvement cf

arpnoximatezlvy 2 dB is obtained when wecompensate for the motion.

\Ve find that even though the displacement measured matches wvell wvith the actual

Udisvlacem-ent ,n a subblock basis, the arproximation involved in measuiring the displacement in

intege-r rumbcer of pixel,: J'erades the accuracy of the overall displacement w),hen averaged over the

entirt- imnage. The displacemrent algcrithm can be applied to the entire image without too much

corn.putat-ina hu~I. owever, we apply qt to 32X32 blocks for consistency with the other

result.s. 1t :s o1bviou.s thtweeaera,-:ng is ex-pected over many, subblocks, we require an

a~gor.h ta gives t-e disriacement wih ractional pixel accuracv. The works of Limb and

l.h: [17'. and Cafforio ana Rocca L are concerned with the problemn of measuring small

d,,, .,emen~s in telev'ision :rnages.

In prac-, :e. !nte purpose ;fon-line motion componsatvon, we would estimate the

tr~te::am :5pa~me t btween the :omost recently rec~ived frames and aprly it to the

2N
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jTable 9. Effect of Motion Compensation on Interframe Prediction
One-Step Ahead Prediction

DESCRIP- BLK # WITHOUT MO- WITH MOTION IMPROVEMENT OVERALL DIS-
TION TION COMPEN- COMPENSATION IN SNR PLACEMENT

SATION

__MSE SNR MSE SNR

1 18.6 35.4 6.7 39.9
IMAGE 2
I G2 8.8 38.7 6.8 39.8

FROM 2.6 (-2.-4)

__ 3 14.2 36.6 8.5 38.8
IMAGE 1 4 5.5 40.8 4.7 35.3

IMAGE 3 1 40.0 32.1 19.2 35.3

FROM 2 15.1 36.3 9.6 38.3 (3,1)
IMAE 3 48.0 31.3 34.7 32.7

.r"IMAGE 2 4 {11.3 37.6 7.23 39.6

I1 54.0 30.8 29.1 33.5- -"IMAGE 4

R2 O 14.6 36.5 8.7 38.8
kFROM T2.3 (,

3 42.4 31.9 27.9 33.7
IMAGE 3 4 9.6 38.3 6.5 40.0 _

1 57.7 30.5 71.1 34.9

FROM 2 16.7 35.9 83.7 28.9 3.0 (-1,4)
IMAGE 37.5 32.4 24.5 34.2
._ _IMAGE 4 4 10.0 38.1 6.5 40.0

1 166.0 25.9 84.9 28.8
* IMAGE 6

" 227.0 24.6 94.3 28.4
FROM 3.2 (1.0)

3 I 55.8 30.7 34.2 32.8
IMAGE 5 4 54.2 30.8 25.0 34.2

1 71.9 29.6 36.8 32.5
IMAGE 7I

FROM 2 121.0 27.3 46.5 31.5SFROM 3.4 (1.-2j

3 46.0 31.5 22.9 34.6
IMAGE 6 4 20.3 35.2 10.3 38.1

1 87.4 28.7 43.3 31.8
a- .,, IMAGE

2 193.0 25.3 81.7 29.0

, [ FROM -3.1 -. I
3 69.3 29.7 44.5 31.7

IMAGE 7 4 25.2 134.1 +13.3 36.9 _

r"O
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Table 9. (Ccntinued) Effect of Motion Compensation on Interframe Prediction
Two- and Three-Step Ahead Prediction

DESCRIP- BLK x WITHOUT MO WITH MOTION IMPROVEME\I' OVLR LL 1D5STION TION COMPEN- COMPENSATION IN SNR PLACEMEN IlO SATION

-_MSE SNR MSE I SNR
1 41.2 32.0 18.4 35.5

IMACE 3
2 15.0 36.4 6.8 39.8'"FROM 2.6 (21

FO3 57.0 30.6 33.5 32.9

IMAGE 1 4 13.3 36.9 I 8,2 1 38.2
. I46.7 31.4t 20.9 33.IMAGE 4

2 14.8 36.4 10.8 37.8a.FR tIM I 2., (l .-3
IMAG3 89.4 2S.6 j 50.4 31.1
IMAGE 1 15.7 [36.2 10.0) 38.2

%

, . -

.

-2,

0I .%
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reconstructed frame. A better result is expected when we use displaced frames as opposed to the

actual frames for deriving both fixed and adaptive predictors. Since the displacement algorithm can

be applied to the entire image, an on-line motion compensation for an adaptive prediction appears

to be feasible and computationally simple. These results are discussed further in Chapter 6.

.)

S.
Sq



CHAPTER 6

DISCUSSION OF THE SIMULATION RESULTS

In this chapter, we discuss the results obtained from the fixed and the adaptive predictor

algorithms. As described in Chapter 1. in order to demonstrate the performance of the algorithms,

we use a set of 8 frames from a video tape of a spacecraft-to-spacecraft docking simulation. Figure

8 shows the 8 frames. These frames are not successive frames of the video tape with the typical

frame rate being 30 frames per second, but were taken at different stages in the docking. We

selected fraraes rep-et.nting far-, mid-, and close-range in order to determine the robustness of the

approaches for different situations. For example, a change in the camera azimuth or elevation

introduces new and, therefore, unpredictable area due to the presence of unmodeled dynamics. The

first 3 frames represent the far-range. The zooming effect is present between images 5 and 6. In

practice, however, a remote pilot can expect successive frames with small interframe displacement

due to the very small velocity of the spacecraft in the docking phase. Hence, the results obtained

in this work represent conservative estimates.

The results of the fixed predictor for up to 3 steps of prediction, and the next frame p:'edicti, n

using one, two, and three of the most recent frames are summarized in Tables 1-5 using the criteria

defined in Chapter 2, namely. MABSE, MSE. % N.MSE, and SNR. The corresponding pictures of the

4 . reconstructed images are shown in Figures 8-13, respectively. In some cases, we present only the

first picture of the sequence to limit the total number of pictures. but the analysis was carried out

,-,, .,." for all cases in all categories and the results are summarized below the figures to give an idea of the

relative subjective merit of the other estimates. For comparison, the results of the frame refresh

approach of prediction are summarized in Tables 6 and 7 for one and two steps of prediction.

respectively. The side effects of processing the images in subblocks cause minor degradation in ihe

reconstructed picture quality, mainly in the form of a border e-ect (more noticeable in the disc

towards the right). This is caused by the partitioning of images into 32X32 subbloc-.s fo:

proce! rig and thereafter pasting the processcd blocks to obtain the complete mage. On the

,-7 .1.Pe4o '

*- i' ' , C l.
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* (e)

Figure 9. (continued) Next-frame prediction via fixed predictor technique. The resulting images
and the error between the original and the reconstructed frame represented by the

signal-to-noise ratio (SNR). (e) Image 6 from Image 5. SNR =27.1 dB. Mf Image 8
from Image 7. SNR - 28.4 dB.
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I
i

..

Figure 11. Three-frame ahead prediction via fixed predictor technique. The resulting image and
* the error between the original and the reconstructed frame represented by the signal-

to-noise ratio (SNR). Image 4 from Image 1. SNR = 31.9 dB.

Note: SNR values for the other images are as follows: Image 5 from Image 2. SNR =

31.3 dB; Image 6 from Image 3. SNR = 27.1 dB: Image 7 from Image 4. SNR 26.5 dB:
Image 8 from Image 5. SNR = 24.9 dB.

5,%
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-S.,

(d)

z.

(e)

Figure 13. (Continued) Next-frame prediction via fixed predictor technique using last three
frames received. The resulting images and the error between the original and the
reconstructed frame represented by the signal-to-noise ratio (SNR).
(d) Image 7 from Images 6. 5, and 4, SNR = 28.5 dB. (e) Image 8 from Images 7. 6, and
5, SNR = 27.9 dB.

Owi
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monitor. we can measure that diistan~e to b3 exactl., 32 Piz)eis Tid;. This. hever, does n"'t make

the image uinacceptable.

From an objective evaluation of the fixed predictor \e:ss ime rel- sh, we can infer that th'

fixed predictor performs better than the frame refresh in almost all casts, iowevel-, the s Lbj'-,7L,'c

qua !'v of the reconstru.cted images is .-utah that tlere cices not sem tLo be a significant advanta 'e of

using this predictor with its attendant computations. The significant limitation of the fixed

predictor is in those situations where the next frame has ne\\ and. therefore, unpredictable

information. The structure of the model chosen in Chapter 3 does no: allow us to compensate for
I

such physical phenomena as tilting or pan, which introduce new inforn-ation. This is obvious from

the lower criterion values and poor quality cf the estimates when predicti!.g certain images

compared to predicting others. For example, the estimate of image 6 from 5 is less accurate

compared to the other estimates. When we apply the displacement-measurement algorithm

described in Chapter 5 to the estimates, we find that improvements in SNR of the order of

approximately 2 dB are achievable. The results are summarized in Table 9 for a set of cases. This

is a significant gain since the results thus obtained are approximately 3 dB better than those

available with the frame refresh technique. The displacement compensation procedure assumes

that over a short sequence of frames, the interframe displacement can be assumed constant. Then,

for the prediction, we wculd use instead of the actual frames, frames displaced by the same

amount as the displacement between the preceding two frames. In this work, we used only actual

frames. Hlere, it is appropriate to point out that an algorithm that measures frame displacement

with fractional pixel accuracy is required to give an accurate estimate for the ':nage when averaged

over al! its subblocks. Otherwise, tte approximation over ind:vidual subblocks makes the overall

estimate less accurate. In the specific application that we are considering. namely, that of satellite

rendenvous and docking operation, the scene is characterized by very slow motion which would

make the inte:frame displacement considerably smaller than w,at we see here. As mentioned

before, the frames- are not s~iccessive frames from the tape. but were deliberately choze- to be

soezral frame-; apart. In eithe; case, the algorithms are not very complex. henc, an on-line

._ -- '').<d,
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movement-compensated prediction appears to be feasible and practical. This area requires further

investigation as it is expected to give better visual results than what we have obtained from the

fixed predictor.

4Another conclusion that we can draw from an evaluation of the estimates, and the tables

summarizing the criterion values, is that one-step ahead prediction almost always performs better

than two- and three-step ahead predictions in that order. Where the interframe motion is small,

e.g.. between images 1 and 2. the prediction is more accurate than in the other cases (Figure 9). An

evaluation of the results of the two- frame ahead prediction (Figure 10) shows a good picture with

an attendant SNR value of 33.1 dB. Three-frame ahead prediction does not appear to be as good as

the other two (Figure 11). A subjective evaluation of Figure 12 (next-frame prediction using last

two frames received) shows that the prediction of image 3 from 2 and 1. image 7 from 6 and 5. and

image 8 from 7 and 6 are the acceptable ones. This again appears to be a result of the interframe

displacement. There also appears to be some duplication of feature points, more apparent in some

cases than the others. This is because prediction using the last two frames received can be thought

of as a projection of the last two frames onto the next frame. A change in the location of certain I
. feature points between consecutive frames results in a shadow effect on the frame estimate. The

results of the next frame prediction using the last three frames received is the worst in terms of the

visual perception of the scene. The blurring which makes the target interpretation almost

impossible is caused by that portion of the image which is nonstationary. This can be inferred

[ from the fact that in that class, the acceptable estimates are those of image 8 (from 7. 6. and 5) and

_ image 7 (from 6. 5, and 4). In the original frame sequence, the most significant interframe

displacement is between images 2 and 3. which is why the other estimates seem so blurry. In

* almost all the cases. the SNR is approximately 30 dB.

The results of the suboptimal adaptive predictor are summarized in Table 8. The

corresponding pictures are presented in Figure 14. From the objective evaluation, the suboptimal

predictor matches the performance of the fixed predictor which, as we have seen, outperforms

NV

4 .
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07

4.-.
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0i

(d)

Figure 14. (Continued) -Next-frame prediction via a suboptimal adaptive predictor technique
using last two frames received. The resulting images and the error between the origi-
nal and the reconstructed frame represented by the signal-to-noise ratio (SNR).
(c) Image 5 from Image 4 and 3. SNR - 32.1 dB.

Wd Image 6 from Image 5 and 4. SNR = 27.0 dlB.
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'rl fmn, refr-esh. ,~eer he ap-ox1i.ation of Ohc inverse tr*,: r o used in the d~\d c

:ne redichr ;ntr')I.c roys;e in the imnage reco-very which is seen as the blurring effec:t. Iht onily

accep'tatle ,-Iz ln hi caitegor% is tlhat of ;:-iage 3 based on irragtes 2 and 1. When we dispiv.

'he oriin ma: 1. 2 nd 3. wve find that the relative Oisplacement between 1 and 2 --:tc!hes

closelv ,:,.itq thal of 2 and 3 This sUggests that in cases whcre the assurrption of" -Wide-S-:.se

stationarity is v alid, th.e prediction is indeed feasible and of an1 acCeptable quality. As described in

Chapter 4. an investigation of the solution of singular mnatrices is in order since that is expected to

improve oi- *-he results ozistainable \kith a fixed' predictor as well as a suboptimal adiaptive predictor.

The aim of this work is to investigate if it is realistic to model the scene dynamics as a

discrete-t~rme linear sLtcte vector model, arid entirnae the model structure which is otherwise eithcr

compleiely unspecified or ill-defined. We do this by either exploiiing some inherent propertie-s of

the images by trvi. to estimate the dynamics via an analysis of the available information, In

either case, the sinbljective quality of the reconstructed estimates is such that the computations

involved ir. deriv rig the predictors may not be justified. Hlowever, in some other cases', such as

movement-compensated predicto~s. it may be possible to obtain far better results in which case the

advantage over frame refresh may warrant the added computations. This area merits further

investigat ionr.
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CHAPTER 7

CONCLUSIONS

The problem of dynamic estimation of unknown, time-varying parameters using a priori

information is considered. The unknown parameters are the image pixel intensities of the next

frames of a video sequence. Also, the dynamics of the model are not available and must be

estimated. The measurable data are the pixel intensities of the preceding frames. We approach the

problem by first representing the image dynamics as a linear state space vector model where each

frame is represented as a state vector of dimension N( = NXN 2 ), sampled at discrete instants. We

then attempt to use the a priori information to estimate the dynamics of the model and to derive an

on-line adaptive estimation of the unknown parameters. In the fixed predictor case, we use the

inherent adjacent-pixel correlation of the image data for deriving the state vector model. The

intent of the work is to determine if it is realistic to model the image dynamics via these

approaches and if so. to investigate if it is possible to obtain a significant improvement over the

frame refresh technique which requires no computations at all.

We find that it is feasible to do an on-line prediction of the image data and if certain

conditions such as slow dynamics are satisfied, then it is possible to match the performance of the

frame refresh technique according to the objective criteria. The conditions assumed are realistic in

the context of teleoperator-controlled remote piloting application which is the main motivation for

this work. It is also shown that in the case of slow dynamics, we can improve the criterion values

by predicting the interframe displacement and compensating for it. However, from a subjective

evaluation of the results of the fixed and adaptive predictors versus the frame refresh, we find that

there is not a tremendous improvement over the frame refresh technique. The latter is attractive

since it does not require any computations. We also find that a significant limitation of the fixed

4'. predictor approach is in those situations where the scene is characterized by rapid movement which

introduces new information in the form of unrnodeled dynamics. This indicates that the pixel

correlation by itself may not be sufficient to model the image dynamics. In such cases, the use of

*
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r an optim~al adp jc redictor .ould be in order prcA'idcdl , C,, puationaliy silrles L,:'~O w

approx~mai; to the polmo neu sgla iatriccs, cuuri be found. The subcptir,-al

predictar used in this case gives good critcrion. values. Ilowever. the miatrices r-presenting the?

imnage pixel i-ensities are seen to be eatcreniely ill-condition-ed maki.no them singular. Evcr' a

Ileneraixed inverse solution fail_- to provide acceptalic estinazes. This is becauise the approximaitin

used fo'cr the -enierabred inverse of the ill-conditioned matrices arctly degrades the visual quality

of the imagets by effectively increasing the contribution of the noise which represents the

unmcodeleci dyniamics.

From the video sequenoc! that wvas anl zdand the specific rredictors used in this work. it

appears that the imrprovoement over frame refresh is not Fignificant enough to warrant the

computations required for these approaches: this does not preclude the possibility of obtaining

significant improvemient wvhen uIsing other approaches. Two areas that merit further investigation

in this regard are as follows,;:

Movemnent-compensated on-l*ine prediction appears to be a promising approach. Our \vork in

Chapter 5 shows that it is possible to improve on the criterion values by estimating interframe

displacenient and compensating for it. It is expected that if one were to use the displaced frames

instead of the actual frames for image &rta prediction and thus account for the interframe

disniacemrent. tha-n the! pr-eiCted frames wvould be more accuratLe than -what one coul.d get from the

frame ref resh. This is a topic for f uzure research in this area.

Another area w\hich merits furtnier investigation is the prob'emn of the ill-conditionied nature

of the image proce ssing matrices. Andrews and Platterson ['19]) and Hiuang >1O suggest an approach

for solv~ng this problemr where a direct pseudoinverse gives unacceptable restored images du,,e to !he

ill-condliticnted nature of the Matrices. This approach involv-es represer n g the image model as

s:arable space-variant model arnd consists of applying SVD to both row an,: column mt~e

separazel'.. This is equivalent to decomposing the imnages into eigenimages and reconstructing the

image by c_ ectively discarding certain eigeninlagis. This area rec.. res f urther i rvcat igation as an

* aolatnut 'ea zed inversstr.a- rsin vim

'IF'
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APPENDIX A

SUPPORTING SOFTWARE

A.1. Software for Fixed Predictor and Data Manipulation for D/A Conversion

program pred
C

c PURPOSE:
c This routine computes the next frame of the video
c sequence using the last frame received and prepares
c the frame estimate for D/A conversion by converting
c it from real to binary data.
c
c ROUTINES CALLED: MTXMLT
c
c LOCAL VARIABLES, INCLUDING DIMENSIONS AND DESCRIPTION:
c X(1:32,1:32), Y(1:32,1:32) - input matrices which hold
c 32x32 block of Image 1 and Image2 respectively
c after converting integers to real numbers.
c M(1:32,1:32), N(1:32,1:32) - input matrices which hold
c 32x32 block of Image 1 and Image2 respectively after
c converting binary numbers to integers.
c XEST(I:32,1:32) - matrix containing the estimate derived.
c PHI(1:32,1:32) - matrix representing the fixed predictor.
c Datal(512), Data2(512), Xsdata(512) - 512 byte arrays to
r. chold one record of imagel, image2 and the estimate
c respectively.
c Xdata(512) - integer array to hold the estimate data
c after real to integer conversion.
c XSl.dat - XS8.dat - files to hold the reconstructed
c image as it is being created column- by- column.

implicit real*8 (a-h,o-z)
implicit integer*4 (i-n)
byte datal(512)
byte data2 (512)

*byte xsdata (512)
integer *2 xdata(512)
integer *4 M(1:32,1:32)
integer *4 N(1:32,1:32)
real *8 PHI(1:32,1:32)
real *8 X(1:32,1:32)
real *8 XEST(I:32,1:32)
real *8 Y(1:32,1:32)
character *20 Image!, Image2

write (6,*) 'Type filename.typ for the first file.'
read (5,1) Imagel

!. format (A)
write (6,* ) 'Type filename.typ for the next file

+ of the sequence.'

read (5,2) Image2
V 2 format (A)

c Open all the units
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cpe,- (U.j 3 P.. t ~ ma, c st a tus od oi~ufrnt
-reco rdty v e i. e3 -e 1= 2

pe (unit=13, il 1 n ' , ,dj- sta tusz no''' lum'ns:rLt c
recordtye. i, rec1 =!',)

open (un it =12, f Ie xc2s&Itas ta tus= en'. fom C) orll t
recordtyT e 1.eul recI'=Ib)

open (unit=14, 0 r s3"ttts 11e ,f~r= unff o r 1 ae3
+ recordtyloe=' fied' , rec.124)

op)e n (un it=16 e' >s .a ts t aeus2 n ew vfor.='unF o r.nze
+4 recordtype= Fixed', recl=24)

+ recordtype='fixed', recl=30)
open (unit=18,file='xs6.dat',status='ne,' f o r m'u;f or m at

+ recordtype='fixed', recl=40)
open fui=9f~=x7cittts e~,orm= 'unf =rrn-- te

+ recordtvoe='fixed', recl=48)

open (uinit=20,flile='xsg.dat',stats='ew' f o r r-= L:,,f c, i a
+ recordtype='fixed', recl=64)
doc13 Init ial ize the p, i-matr ix

do 1=1 ,32

phi (k, 1) 0.0
end do
end do

cSet th- phi- matrix
do 1=1,32,31
do k =I,4
phi(1,l) =1.0,' 4.62
if ( ( J. I .e. 32) then.I; phi(I,l+k)= ('.96 ** k) /4.62
end 1 te

if(1-k) .ge. 1)te
phi(i,I-k) =(0.96 ** k) /4.62
end :1 -.

* , end do

LW end do

o J=2,31,29

o~ H ) =1.0/ 5.58
f. r (J+*) .ie. 32) th-n

%n' y-) (0L96 **k '5. 58

~~~:~ (-~ . 1 ) t hen
Dijj-k)=(.6* )/55

end i f
end! -

047
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do i=3,30,27
do k=l, 4
phi(i,i) = 1.0/ 6.5
if ((i+k) .le. 32) then
phi(i,i+k)= (0.96 ** k) /6.5
end if
if ((-k) .ge. 1 ) then
phi(i,i-k) = (0.96 ** k) /6.5
end if
end do
end do
do j=4,29,25
do k=1,4
phi(j,j) = 1.0/ 7.38
if ((j+k) .le. 32) then
phi(j,j+k)= (0.96 ** k) /7.38
end if
if ((j-k) .ge. 1 ) then
phi(j,j-k) = (0.96 ** k) /7.38
end if
end do
end do
do i=5,28
do k=1,4
phi(i,i) = 1.0/8.23
if ((i+k) .le. 32) then
phi (i,i+k) =(0.96 **k) /8.23
end i '
if ((-k) .ge. 1 ) then
phi (i,i-k) = (0.96 ** k) / 8.23
end if
end do

*end do
c Read flnagel

npin =512

npout =32

nrout =32

c Set the initial values for performance measures
suml = 0.0
surn2 = 0.0
sum3 = 0.0
surn4 = 0.0
sum5 = 0.0
sum6 =0.0
sum 7 = 0.0
sum8 = 0.0
snr = 0.0

c Start processing column 1: 8
do 10 npskip = 0,224,32

c ~Start processing a 3.x32 block in the fir-st column

do 20 k=1,8
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Read next nr-olt (=2i hscase) record S!
do I I, n ronu t

read (11) (datal'(j), j=1 ,npin.)
do I = , mpout,

j ] zext ( datallnpsk:o-~-)
X(ij )= dflotj ( M(i, j

end do
end do

Cross-check.
write (6,3) K,X(l,l)
format. (/,lx,'BLOCK 'V, X(1,l)=',F9.3)
call ntxmlt (phi,-32,32,X, 32,32,XEST)

dw ~Start wrlzinq a -32x32 block at a time, 1-e.,
npskip-l :npskio±32 after doing real to integer

covesion (integer data written t iayfls

do ko,=l,32
if (noskio .ea. 0) then
go to 303
else if (npskip .eq. 32) then

:~~:read (12) (xsdata(j), j = ,npskiQ)
else if (noskip .eq. 64 )then
read (14) (xsdata(j), j=l,npskip)
else if (npsklp .ea. 96) then

9read (15) (xsdata(j), j = l,nps kip)
else if (npskip .eq. 128) then
read (16) (xsdata(j), 1 ,noskiJp)
else if (npskip .eq. 160) then
read (17) (xsdata(j), j = 1,npskip)
else if (npskip .eq. 192) then
rpad (13) (xsdata(j), j =l,npskip)
else if (npskip .eq. 224) then
read (19) (xsdata(J), J = --,npskip)
end i

30D3 do 1=1,32
:Kdati.( nps'.: -) 1 iidnnt ( xest 11l)
if (xdata(npski-~l) .ge. 127) then
xdata(npskio.pl) =(xdata(noskio+I)) -255

ed i
xs-A 3ta ( nosk ip+i I xdaza nos.-io< 1
e nd d o

* if (nnpsk-: .eo. 0) then
wri-e* ( 12) xsiat-a> I n~l (ns 2
else :f(npskin eq. 2) -e

wrp (14) (xdt~ si 3
else ifnse .c 4 n

es if Iro.skic.a
wr i e ( 16) (xsd a--a(

es if pns~ .eq. 8
wr ite -7a -,sdar a3)(m

NFW
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else if (npskip .eq. 160) then
write (18) ( xsdata(j), j=l,(npskip'32)
else if (npskip .eq. 192) then
write (19) ( xsdata(j), j=l,(npskip+32)
else if (npskip .eq. 224) then
write (20) ( xsdata(j), j=l,(npskip+32)
end if
end do

c Cross-check.
write (6,4) xest(l,l)

4 format (lx,'XEST(l,l) =',F9.3
c Now read IMAGE2.DAT
c Read nrout (=32 in this case) records at a time!

do i = 1, nrout
read (13) (data2(j), j=1,npin)
do j = 1, npout
N(i,j) = jzext( data2(npskip+j)

* Y(i,j) = dflotj( N(i,j)
end do

end do
c Cross-check.

write (6,5) Y(1,l)
5 format (1X,'Y(1,l)=',F9.3)
c Compute mabse, mse, % nmse and SNR.

do i = 1,32
do j=1,32

sumi = sumi + (dabs (Yi,j) -Xest(i,j)))
sum2 =sum2 + ( Y(i,j) -Xest(A:,j) ) *2.0

sum3 = sum3 + (Yi,j) ** 2.0)
end do

end do
c Close the loop for each 32x32 block (total 8).
20 continue
c After 8 iterations, close the loop for individual
c columns (total 8), i.e., npskip+1: npskip+32, and
c print the performance measures for each column

sum4 = sum2 /sum3
suml = suml /(1024 * 8)
sum2 = sum2 /(1024 * 8)
sum3 = sum3 /(1024 *300)

write (6,7) suml, sum2, sum4, sum3
7 format (lx, 'MABSE=' ,E9.3,lx, 'MSE=' ,E9.3,lx, 'NmSE=' ,E9.3,

-~lx, 'MEAN IMAGE VAR. /100 =&,E12.6)
Reinitialize the performance measures for each

c column iteration
sum5= sum5 + suml
sum6 = sum6 +sum2
sum =sum7 + sum3

suml = 0.0
sum2 = 0.0
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sum3 = 0.0
sum 4 =0.0

Close uni-,s 1I, 12, 13 and(] r~n 2 os> t J

c start readIng :r:c-ds f-om te1trir:
rewind ( 11 )
rewind (13)

if (npskip .eq. 0) then
close ( 12
open(rit1,ic-xsda'sas=odom

±'unformatied', readoniv,, re::ordtype=' fixed ', el)
else if1 (nLpskip .eq. 32) then
close (14)
open (uri4--'a ,file-' xs2.dat',status='oI Ld',form
'unformatted',readoniy, recordtype-'fixed', recl=16)
else if (npskip .eq. 64) then

~ close (15)
open (unit=l5 ,flle=' xs3.dat',status='old', formi=

+ 'unformattedi,readonly, rec-ordtype='fixed', recl=24)
else if (npskir .ea. 96) then
close (16)-
open (unit=16 ,hl'e=' xs4.dat',status='old',form =i

~ .. -+ 'unforrnatted',readonly, recordtype='fixed', recl=32)
else if (npskip .eq. 128) then

close (17)
open (unit=17,file='xs5.dat',status='old',form

+ 'unforrnatted',readonly, recordtype='fixed', recl=40)
else if (npskip .eq. 160) then
close (18)
open (unit=18,file='xs6.dat',st-atus='old',forn

+ 'unformatted',readonly, recordtype='fixed', recl1=48)
else if (npskip .eq. 192) then
close (19)
open (unit=19,file='xs7.dat',status='old',forn

+ 'unformatted',readonly, recordtype='fixed', reol=56)
else if ([Lpskip .eq. 224) then
close (20)
end if.

10 continue
write (6,11) Image2, Imagel, Npskip

~'11 format (lx, 'THIS PROGRAM,1 PRE=DICTS' ,A, ' FROM ' , A
+ ' FOR A 256X32 BLOCK AF TER DELET"ING',14,' COLUMNS.',

/,'FINISH:-;D PROCESSING ?HE FIRST 256X256 INMAGE')
SUM5 SUM5 /S.
SUMS6 SUM6 8 .
SUM 7= SUM7 /8.
SUMB SUM6/SUM71"
.1,R =SNR +(255 ** 2./ S-M)
SNR = 10.0 *dlogl0 (snr'
write (6,12) sum5, sum6, sum7

12 format (lx,'TIOTALMAS' .,x'OAMSE=',E9).3,ix,
+ MEAN 1M A (-E VAR./10 0 OVER -iB H-ENT: R--, BLO-CK '12 .6

write (,,, 13) sum8,snr
I? for7'at-.1(X, -C TTAL- 7::s 9. 3, IX, ' SNR=' 6. 3

111111111111e no,!

p .Q. 

:*



78

subroutine mtxmlt(mtxa,nrowa,ncola,mtxb,nrowb,ncolb,mtxc)
c
c PURPOSE:
c This subroutine computes the matrix product of two matrices.
c CALLING SEQUENCE:
c CALL MTXMLT (MTXA,NROWA,NCOLA,MTXB,NROWB,NCOLB,MTXC)
c MTXA: (input) first matrix of product, maximum dimension
c MTXA(1:32,1:32).
c NROWA: (input) number of rows in MTXA.
c NCOLA: (input) number of columns in MTXA.
c MTXB: (input) second matrix of product, maximum dimension
c MTXB(I:32,1:32).
c NROWB: (input) number of rows in MTXB.
c NCOLB: (input) number of columns in MTXB.
c MTXC: (output) resultant product matrix of MTXA times
c MTXB, maximum dimension MTXC(I:32,1:32).
c ROUTINES CALLED: none.
c LIMITATIONS:
c The maximum dimension of the input and output matrices
c is 32x32.

*c
c * END OF PREFACE *

implicit real*8 (a-h,o-z)
implicit integer*4 (i-n)
real*8 mtxa(l:nrowa,l:ncola), mtxb(l:nrowb,l:ncolb)
real*8 mtxc(l:nrowa,l:ncolb)
if ((ncola-nrowb).eq.0) then

if ((nrowa.le.32).and.(nrowb.le.32).and.(ncola.le.32).and.
> (ncolb.le.32)) then

do 100 i = l,nrowa
do 200 j = l,ncolb

mtxc(i,j) 0.0
do 300 k = l,ncola

mtxc(i,j) = mtxc(i,j) + mtxa(i,k)*mtxb(k,j)
300 continue
200 continue
100 continue

else
write(20,9000)

end if
else

write (20,9010) ncola, nrowb
write (20,9020)

end if
9000 format (/,' dimension of one or both MTXMLT input',

> 'matrices are larger than 32x32.')

9010 format (/,' mtxa has',i2,' columns; mtxb has ',i2,
> ' rows.')

9020 format (/,' matrix multiplication is not defined in',
> 'this situation.')
return
end

iA
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A.2. Software for Interframe Displacement Estimation

program motion
c
c PURPOSE: This routine computes the interframe displacement

. c between 2 frames of a video sequence using a minimum mean
c square error criterion accoding to the algorithm by Jain
c and Jain.

LOCAL VARIABLES INCLUDING DIMENSIONS AND DESCRIPTION:
C

c X(1:32,1:32), Y(1:32,1:32) - inout matrices to hold 32x32
c blocks of images 1 & 2, respectively after integer to real
c conversion.
c M(1:32,1:32), N(1:32,1:32) - input matrices to hold the
c above data after byte to integer conversion.

Bdata(512), Data(512) - 512 byte arrays to hold one record
c of imagel and image 2,respectively, at any given time.
C
c Sum(l:5) - array to hold the variances for a 5-point search.
c Sum2(!:9) - array to hold the variances for the final
c 9-ooint search.
c Summ, Summ2 - working variables for the minimum variance
o over 5- and 9=point search, respectively.
c P, PK, NN - working variables.
c Q, L and TQ, TL - working variables for the x,y displacement
c over a block, and over the entire image, respectively.

c VALI(l:5), VALJ(I:5) and VALI2(1:9), VALJ2(l:9) - arrays to
c hold the x,y values for the 5- and 9-point search,
c respectively.

c
c implicit real*8 (a-h,o-z)

implicit integer*4 (i-n)
byte bdata(512)
byte data (512)
character *63 Infilel, Infile2
real *8 sum(l:5), sum2(l:9)
real *8 summ, summ2, tsum
integer *4 q, p, pk, nn, tq, tl
real *8 X(1:43,1:48)
real *8 Y(1:64,1:64)
integer *4 vali(l:5)

Lw integer *4 valj(l:5)
integer *4 vali2(1:9)intender *4 valj2(l:9)

,rinteger *4 '-(1:48,1:48)
t, --, e~r_ *- 4 N(1:64,1:64)

,(6,*) 'Type Filename.type for the estimate file.
smoRead (5f?1 Tnfilel. -write (6,*) 'What is ,-. -he es--imate of? Type "Filena .e t .....

9 " - for the estimate file. '
R. ead ' ', ) T nfi e2

4 <4 < %4, ' ,' <.' '. '<".:-":.'-".¢./.-."- .. ' - '?-" ' f:'
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c Initialize variables
npinl = 256
npoutl = 32
nroutl = 32
npin2 = 512
tq=0
tl=0
tsum = 0.0
do2 pkpl=0243

do 0 nskipJ. = 0,224,32
do1Crkpl=0243

c Oe l h nt
ope opentall fihe= uinfs sau='l
ope form=l u fratdlodye= ifll tts'ixd' , rc=
+oe (uni=12,filate' inie2, tatu='olxd', rc=4

fprn (unformattfied= ,ni2 reor tpe='xd' ,rcl28
+' Co m ' n o m t e ' e o d y e ' i e ' e l 1 8

npu2
nrout2 = 0

c ort eac 0 23 ie u-lc nte1tiae
c pick eac 64x4 pi sub-block in the nd imageee
c atc th same4 satiallocaion n thdie cner d
c we woul ae ontil 48capiels alng oe cornbohr aes
c w ol aeol 8pxl ln n rbt xs

If(rkpcg.3)te
nsIf 2 nrskipl -163) he

else if (nrskipl .eq. 0) then
nrskip2 = nrskipl
end i

If (npskipl .ge. 32) then
npskip2 = npskipl -16
else if (npskipl .eq. 0) then
npskip2 = npskipl
end if

C
If ((nrskipl .eq. 0) .or. (nrskipl .eq. 224)) then
nrout2 = 48
else
nrout2 = 64
end if

c
If ((npskipl .eq. 0) .or. (npskipl .eq. 224)) then
npout2 = 48
else
npout2 =64
end if

C
do i=1,48

do j=1,48
X(i'j) = 0.0

01,0 11 111 P



M( i ,j) 0
end do

end do
do k=1, 64

do 1=1,64
Y(k, 1) = 0.0
N(k,1) =0
end do

end do
do 1 = 1,5
val ( 1) = 0
valj(1) = 0
end do
do p = 1, 9
vali2(p) = 0
valj2(p) = 0
end do
P=0

k=0
pk=0

c Read Infilel.
c First skip nrskipl records!

do i =1,nrskipl
read(11) bdata(1)

c en oRead next nroutl records!

do a (11 (bdata(j), j=l,npinl)
k = 1
do j = 17, 48
M(i,j) = jzext( bdata(npskipl+k)
x(i,j) = dflotj( MWi,j)
k = k +1
end do

en d d o
c Cross-check.

If (nrskipl .eq. 224) then
write (6,890) NPSKIP1, NRSKIP1, X(17,17)

890 format (iLx,'NPSKIPlI =',14,' ,NRSKIP1 =' ,14, ' ,X(1,1) =' ,F9.3)
end if

- Now read infile2
c ~First skip nrskip2' records!

do i ='1, nrskiQ2
read(12) data(1)
end do

c Read next nrout2 re:ords!
if nrskipl .eq. 0) then
nil 1 17

el~se
Ou nil =1

end if
ni2 = nil + nrout2-
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If ( npskipl .eq. 0) then
njl = 17
else
njl = 1
end if
nj2 =njl + npout2 -1
-do i =nil, ni2

read (12) (data(j), j=l,npin2)
k=l1
do j = njl, nj2
N(i,j) = jzext( data(npskip2+k)
Y(i,j) = dflotj( N(i,j)
k = k +1

end do
end do

c Cross-check.
If ((npskipl .eq. 224) .and. (nrskipl .eq. 224)) then
write (6,891) NPSKIP2, NRSKIP2, Y(nil, njl)

891 format (1x,'NPSKIP2 =',14,',NRSKIP2 =',14,',Y(l,l) =',F9.3)
end if

c Compute the variances for the 5-point search.
c

nn 8
q= 0
1=0

3000 continue
vali(l) =0
valj (1) = 0
vali(2) = 1 * nn
valj(2) = 0
vali(3) = 0
valj(3) = 1 * nn
vali(4) =-1 * nn
valj(4) = 0
vali(5) = 0
valj(5) = -1 * nn

c
2020 continue

do 2000 p =1,5
sum (p) =0.0

Ak k=0
pk = 0
k= q +vali(p)
pk I 1 - jalj(p)

c variance = infinity, if 16 < i,j <-16, i.e.,
C max Imum pixel displacement is 16 pixels.

if ((k gt. 16) .or. ( k Ilt. -16) .or.
+(pk .gt. 16) .or. (pk .1t. -16) ) then
sum(p) = 1000000.0
else
do 200 ml = 17,48
do 100 ni = 17,48
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sum(p) = sum(p) ±(X(ml,nl) - Y(mli-k,nl+pk) ) *2

100 continue
200 continue

sum(p) = sum(p) //(32**2)

end if

L 200 en d Compute the minimum variance
2005 continue

sumIP = 0. 0
surnm = SING'-( DMINl( dble(sum(1)), dble(sum(2)), dble(sum(3)),

+ dble(sum(4)), dble(sum(5))
c
c Find the minimum.

If (summ .eq. sum(l)) then
pq=l
else if (summ .eq. sum(2)) then
pq =2
else if (sumn .eq. sum(3)) then
pq =3
else if (summ. eq. sum(4)) then
pq =4
else if (sunn .eq. sum(S5)) then
pq =5
end if
q = q + vali(pq)
1 = I + valj(pq)

P c
If (pq .ea. 1) then
go to 2010
else if (pq .gt. 1) then
go to 2020
end if

2010 continue
nn =nn/2

If (nn .eq. 1) then
go to 4000
else if ( nn .gt. 1) then
go to 3000
end if

4000 continue
.7, vali2(l) = 0

valj2(1) = 0
vali2(2) =1

0valj2(2) =0
vali2(3) = 1
valj2(3) = 1
vali2(4) = 0
valj2(4) = 1
vali2(5) =-1
valj2(5) = -I

va i ( ) = -
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vali2(7) =-1
valj2(7) =-1
vali2(8) =0
valj2(8) =-1
vali2(9) =1
valj2(9) =-1

C
c Compute the variances for the final 9-point search,
c i.e., over -1. (=,<) i'j (=,<) 1.

do 5000 p =1,9
sum2(p) =0.0
k = 0
pk = 0
k= q + vali2(p)
pk =1 + valj2(p)
If ((k .gt. 16) .or. (k .1t. -16) .or.

" (pk .gt. 16) .or. (pk .1t. -16) ) then
sum2(p) =1000000.0
else
do 500 ml = 17,48
do 400 nl = 17,48
sum2(p) = sum2(p) + ( X(ml,nl) - Y(ml+k,nl+pk) ) *2

400 continue
500 continue

sum2(p) = sum2(p) / (32**2)
end if

5000 end do
c Compute the minimum variance
3005 sunun2 = 0.0

summ2 =SNGL( DMIN1( dble(sum2(l)), dble(sum2(2)),
" dble(sum2(3)), dble(sum2(4)), dble(sum2(5)), dble(sum2(6)),
" dble(sum2(7)), dble(sum2(8)), dble(sum2(9)) )

c
c Find the minimum.

If (summ2 .eq. sum2(1)) then
pq= 1
else if (summ2 .eq. sum2(2)) then
pq =2
else if (summ2 .eq. sum2(3)) then
pq= 3
else if (summ2 .eq. sum2(4)) then
pq =4 i
else if (sumn2 .eq. sum2(5)) then

pq =5
elseif (summ2 .eq. sum2(6)) then
pq =6
else if (summ2 .eq. sum2(7)) then
pq =7
else if (sumn2 .eq. sum2(8)) then
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pq=8.3 else if (surnm2 .eq. sum2(9)h then
pq= 9
end if
q = q + vali2(pq)
1 = 1 + valj2(pq)

cAgain, limit the displacement to x,y (,)16.

C

If ( (qr .1t. (-l*l6)) .or. (q .gt. 16) .or. (1 .gt. 16)
+.or. (1 .1t. (-l*l6)) )then
sum(pq) = 1000000.0
q =q -vali(pq)
1 1 -valj(pq)
go to 3005
end if

tq = tq + q
ti = ti + 1
tsurn = tsurn + summ2

6001 close (11)
close (12)

10 END DO
c

write (6,794) npskipl, nrskiLpl,nn,tq,tl,tsum
794 format (lx,2NSKIPl=',I4,' ,NRSKIP1=',I4,' ,in=',I4,/,

+ TOTAL (SO FAR) DMD DIMENSIONS: q =',14,' ,l =',i4,/,
+ ' MIN (SO FAR) D(q,l) =',FlO.3)

20 END DO
C

write (6,993) infilel, infile2
993 format (/,'THIS PROGRAM COMPUTES THE MINIMUM VARIANCE

+ BETWEEN',A,'AND', A,'FOR THE 1ST 256x256 SUB-IMAGE.')
C

write (6,804) tq,tl,tsun
804 format (/,' TOTAL DMD DIMENSIONS: q =',14,' l1 =',14,

+ ' MIN AVG VAR =',FlO.3)

r end
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.APPENDIX B

NUMERICAL VALUES ASSOCIATED WITH THE IMAGE PROCESSING PROBLEM

B.l. Non-Zero Elements of A-Matrix

A (1, 1) = 0.216 A ( 1, 2) = 0.208 A ( 1, 3) = 0.199

A (1, 4) = 0.192 A ( 1, 5) = 0.184 A ( 2, 1) = 0.172

A (2, 2) = 0.179 A ( 2, 3) = 0.172 A ( 2, 4) = 0.165

A (2, 5) = 0.159 A ( 2, 6) = 0.152 A ( 3, 1) = 0.142

A(3, 2) =0.148 A (3, 3) = 0.154 A (3, 4) = 0.148

A (3, 5) = 0.142 A ( 3, 6) = 0.136 A ( 3, 7) = 0.131

A (4, 1) = 0.120 A ( 4, 2) =0.125 A ( 4, 3) = 0.130

A (4, 4) = 0.136 A ( 4, 5) = 0.130 A ( 4, 6) = 0.125

A (4, 7) = 0.120 A ( 4, 8) = 0.115 A ( 5, 1) = 0.103

A (5, 2) = 0.108 A ( 5, 3) = 0.112 A ( 5, 4) = 0.117

A (5, 5) = 0.122 A ( 5, 6) = 0.117 A ( 5, 7) = 0.112

A (5, 8) = 0.108 A ( 5, 9) = 0.103 A ( 6, 2) = 0.103

A (6, 3) = 0.108 A ( 6, 4) = 0.112 A ( 6, 5) = 0.117

A (6, 6) = 0.122 A ( 6, 7) = 0.117 A ( 6, 8) = 0.112

A (6, 9) = 0.108 A ( 6,10) = 0.103 A ( 7, 3) = 0.103

A (7, 4) = 0.108 A ( 7, 5) =0.112 A ( 7, 6) = 0.117

A (7, 7) = 0.122 A ( 7, 8) = 0.117 A ( 7, 9) = 0.112

A (7,10) =0.108 A ( 7,11) = 0.103 A ( 8, 4) = 0.103

A (8, 5) =0.108 A ( 8, 6) = 0.112 A ( 8, 7) =0.117

A (8, 8) = 0.122 A ( 8, 9) = 0.117 A ( 8,10) = 0.112

A (8,11) = 0.108 A ( 8,12) =0.103 A ( 9, 5) =0.103
A (9, 6) = 0.108 A ( 9, 7) = 0.112 A ( 9, 8) = 0.117

A (9, 9) = 0.122 A ( 9,10) =0.117 A ( 9,11) = 0.112

A (9,12) = 0.108 A ( 9,13) = 0.103 A (10, 6) = 0.103

A (10, 7) = 0.108 A (10, 8) = 0.112 A (10, 9) = 0.117

A (10,10) = 0.122 A (10,11) = 0.117 A (10,12) = 0.112

A (10,13) = 0.108 A (10,14) = 0.103 A (11, 7) = 0.103

A (11, 8) = 0.108 A (11, 9) = 0.112 A (11,10) = 0.117

A (11,11) = 0.122 A (11,12) = 0.117 A (11,13) = 0.112

A (11,14) = 0.108 A (11,15) = 0.103 A (12, 8) = 0.103

A (12, 9) = 0.108 A (12,10) = 0.112 A (12,11) = 0.117

A (12,12) = 0.122 A (12,13) = 0.117 A (12,14) = 0.112

A (12,15) = 0.108 A (12,16) = 0.103 A (13, 9) = 0.103

A (13,10) = 0.108 A (13,11) = 0.112 A (13,12) = 0.117

A (13,13) =0.122 A (13,14) = 0.117 A (13,15) = 0.112

A (13,16) = 0.108 A (13,17) =0.103 A (14,10) = 0.103

A (14,11) = 0.108 A (14,12) =0.112 A (14,13) = 0.117

*A (14,14) = 0.122 A (14,15) = 0.117 A (14,16) = 0.112

A (14,17) = 0.108 A (14,18) = 0.103 A (15,11) = 0.103

A (15,12) =0.108 A (15,13) = 0.112 A (15,14) = 0.117

.. A (15,15) = 0.122 A (15,16) = 0.117 A (15,17) = 0.112

A (15,18) =0.108 A (15,19) = 0.103 A (16,12) =0.103

A (16,13) = 0.108 A (16,14) = 0.112 A (16,15) = 0.117

A (16,16) = 0.122 A (16,17) = 0.117 A (16,18) = 0.112

A (16,19) = 0.108 A (16,20) =0.103 A (17,13) = 0.103

A (17,14) =0.108 A (17,15) =0.112 A (17,16) =0.117

A (17,17) = 0.122 A (17,18) = 0.117 A (17,19) = 0.112

A (17,20) = 0.108 A (17,21) = 0.103 A (18,14) = 0.103

0
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A (18,15) = 0.108 A (18,16) = 0.112 A (18,17) = 0.117
A (18,18) = 0.122 A (18,19) = 0.117 A (18,20) = 0.112

A (18,21) = 0.108 A (18,22) = 0.103 A (19,15) = 0.103

0 A (19,16) = 0.108 A (19,17) 0.112 A (19,18) 0.117
A (19,19) = 0.122 A (19,20) = 0.117 A (19,21) = 0.112
A (19,22) = 0.108 A (19,23) = 0.103 A (20,16) = 0.103
A (20,17) = 0.108 A (20,18) = 0.112 A (20,19) = 0.117

A (20,20) = 0.122 A (20,21) = 0.117 A (20,22) = 0.112
A (20,23) = 0.108 A (20,24) = 0.103 A (21,17) = 0.103

A (21,18) = 0.108 A (21,19) = 0.112 A (21,20) = 0.117

A (21,21) = 0.122 A (21,22) = 0.117 A (21,23) = 0.112

A (21,24) = 0.108 A (21,25) = 0.103 A (22,18) = 0.103
A (22,19) = 0.108 A (22,20) = 0.112 A (22,21) = 0.117

A (22,22) = 0.122 A (22,23) = 0.117 A (22,24) = 0.112

A (22,25) = 0.108 A (22,26) = 0.103 A (23,19) = 0.103
A (23,20) = 0.108 A (23,21) 0.112 A (23,22) = 0.117

A (23,23) = 0.122 A (23,24) = 0.117 A (23,25) = 0.112

A (23,26) = 0.108 A (23,27) = 0.103 A (24,20) = 0.103

A (24,21) = 0.108 A (24,22) = 0.112 A (24,23) = 0.117

A (24,24) = 0.122 A (24,25) = 0.117 A (24,26) = 0.112

A (24,27) = 0.108 A (24,28) = 0.103 A (25,21) = 0.103

A (25,22) = 0.108 A (25,23) = 0.112 A (25,24) = 0.117

A (25,25) = 0.122 A (25,26) = 0.117 A (25,27) = 0.112
A (25,28) = 0.108 A (25,29) = 0.103 A (26,22) = 0.103

A (26,23) = 0.108 A (26,24) = 0.112 A (26,25) = 0.117
A (26,26) = 0.122 A (26,27) = 0.117 A (26,28) = 0.112

A (26,29) = 0.108 A (26,30) = 0.103 A (27,23) = 0.103
A (27,24) = 0.108 A (27,25) = 0.112 A (27,26) = 0.117

A (27,27) = 0.122 A (27,28) = 0.117 A (27,29) = 0.112

A (27,30) = 0.108 A (27,31) = 0.103 A (28,24) = 0.103
A (28,25) = 0.108 A (28,26) = 0.112 A (28,27) = 0.117

A (28,28) = 0.122 A (28,29) = 0.117 A (28,30) = 0.112

A (28,31) = 0.108 A (28,32) = 0.103 A (29,25) = 0.115
A (29,26) = 0.120 A (29,27) = 0.125 A (29,28) = 0.130

A (29,29) = 0.136 A (29,30) = 0.130 A (29,31) = 0.125
A (29,32) = 0.120 A (30,26) = 0.131 A (30,27) = 0.136
A ( 30,28) = 0.142 A (30,29) = 0.148 A (30,30) = C.1154

A (30,31) = 0.148 A (30,32) = 0.142 A (31,27) = 0.152

A (31,28) = 0.159 A (31,29) = 0.165 A (31,30) = 0 172
A (31,31) = 0.179 A (31,32) = 0.172 A (32,28) = 0.184

A (32,29) = 0.192 A (32,30) = 0.199 A (32,31) = 0.208
A (32,32) = 0.216
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